Foundations of Modern Potential Theory


Book Description

For a long time potential theory was necessarily viewed as only another chapter of mathematical physics. Developing in close connection with the theory of boundary-value problems for the Laplace operator, it led to the creation of the mathematical apparatus of potentials of single and double layers; this was adequate for treating problems involving smooth boundaries. A. M. Lyapunov is to be credited with the rigorous analysis of the properties of potentials and the possibilities for applying them to the 1 solution of boundary-value problems. The results he obtained at the end of the 19th century later received a more detailed and sharpened exposition in the book by N. M. Gunter, published in Paris in 1934 and 2 in New York 1967 with additions and revisions. Of fundamental significance to potential theory also was the work of H. Poincare, especially his method of sweeping out mass (balayage). At the beginning of the 20th century the work of S. Zaremba and especially of H. Lebesgue attracted the attention of mathematicians to the unsolvable cases of the classical Dirichlet problem. Through the efforts of O. Kellogg, G. Bouligand, and primarily N. Wiener, by the middle of the 20th century the problem of characterizing the so-called irregular points of the boundary of a region (i. e. the points at which the continuity of the solution of the Dirichlet problem may be violated) was completely solved and a procedure to obtain a generalized solution to the Dirichlet problem was described.




Foundations of Modern Probability


Book Description

The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.




Foundations of Potential Theory


Book Description

Introduction to fundamentals of potential functions covers the force of gravity, fields of force, potentials, harmonic functions, electric images and Green's function, sequences of harmonic functions, fundamental existence theorems, the logarithmic potential, and much more. Detailed proofs rigorously worked out. 1929 edition.




Classical and Modern Potential Theory and Applications


Book Description

Proceedings of the NATO Advanced Research Workshop, Château de Bonas, France, July 25--31, 1993







Potential Theory


Book Description

During the last thirty years potential theory has undergone a rapid development, much of which can still only be found in the original papers. This book deals with one part of this development, and has two aims. The first is to give a comprehensive account of the close connection between analytic and probabilistic potential theory with the notion of a balayage space appearing as a natural link. The second aim is to demonstrate the fundamental importance of this concept by using it to give a straight presentation of balayage theory which in turn is then applied to the Dirichlet problem. We have considered it to be beyond the scope of this book to treat further topics such as duality, ideal boundary and integral representation, energy and Dirichlet forms. The subject matter of this book originates in the relation between classical potential theory and the theory of Brownian motion. Both theories are linked with the Laplace operator. However, the deep connection between these two theories was first revealed in the papers of S. KAKUTANI [1], [2], [3], M. KAC [1] and J. L. DO DB [2] during the period 1944-54: This can be expressed by the·fact that the harmonic measures which occur in the solution of the Dirichlet problem are hitting distri butions for Brownian motion or, equivalently, that the positive hyperharmonic func tions for the Laplace equation are the excessive functions of the Brownian semi group.




Classical Potential Theory


Book Description

A long-awaited, updated introductory text by the world leaders in potential theory. This essential reference work covers all aspects of this major field of mathematical research, from basic theory and exercises to more advanced topological ideas. The largely self-contained presentation makes it basically accessible to graduate students.




Potential Theory - Selected Topics


Book Description

The first part of these lecture notes is an introduction to potential theory to prepare the reader for later parts, which can be used as the basis for a series of advanced lectures/seminars on potential theory/harmonic analysis. Topics covered in the book include minimal thinness, quasiadditivity of capacity, applications of singular integrals to potential theory, L(p)-capacity theory, fine limits of the Nagel-Stein boundary limit theorem and integrability of superharmonic functions. The notes are written for an audience familiar with the theory of integration, distributions and basic functional analysis.




Potential Theory


Book Description

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.




Potential Theory


Book Description

The ?rst six chapters of this book are revised versions of the same chapters in the author’s 1969 book, Introduction to Potential Theory. Atthetimeof the writing of that book, I had access to excellent articles,books, and lecture notes by M. Brelot. The clarity of these works made the task of collating them into a single body much easier. Unfortunately, there is not a similar collection relevant to more recent developments in potential theory. A n- comer to the subject will ?nd the journal literature to be a maze of excellent papers and papers that never should have been published as presented. In the Opinion Column of the August, 2008, issue of the Notices of the Am- ican Mathematical Society, M. Nathanson of Lehman College (CUNY) and (CUNY) Graduate Center said it best “. . . When I read a journal article, I often ?nd mistakes. Whether I can ?x them is irrelevant. The literature is unreliable. ” From time to time, someone must try to ?nd a path through the maze. In planning this book, it became apparent that a de?ciency in the 1969 book would have to be corrected to include a discussion of the Neumann problem, not only in preparation for a discussion of the oblique derivative boundary value problem but also to improve the basic part of the subject matter for the end users, engineers, physicists, etc.