Fourier Analysis and Boundary Value Problems


Book Description

Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics. A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field. - Topics are covered from a historical perspective with biographical information on key contributors to the field - The text contains more than 500 exercises - Includes practical applications of the equations to problems in both engineering and physics




Fourier Series, Transforms, and Boundary Value Problems


Book Description

This volume introduces Fourier and transform methods for solutions to boundary value problems associated with natural phenomena. Unlike most treatments, it emphasizes basic concepts and techniques rather than theory. Many of the exercises include solutions, with detailed outlines that make it easy to follow the appropriate sequence of steps. 1990 edition.




Ordinary and Partial Differential Equations


Book Description

In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.




Partial Differential Equations with Fourier Series and Boundary Value Problems


Book Description

Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; instructions for obtaining the Instructor Solutions Manual is included in the book. 2004 edition, with minor revisions.




Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (Classic Version)


Book Description

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green's functions, and transform methods. This text is ideal for readers interested in science, engineering, and applied mathematics.




Partial Differential Equations and Boundary-Value Problems with Applications


Book Description

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.




Boundary Value Problems


Book Description

Boundary Value Problems is a text material on partial differential equations that teaches solutions of boundary value problems. The book also aims to build up intuition about how the solution of a problem should behave. The text consists of seven chapters. Chapter 1 covers the important topics of Fourier Series and Integrals. The second chapter deals with the heat equation, introducing separation of variables. Material on boundary conditions and Sturm-Liouville systems is included here. Chapter 3 presents the wave equation; estimation of eigenvalues by the Rayleigh quotient is mentioned briefly. The potential equation is the topic of Chapter 4, which closes with a section on classification of partial differential equations. Chapter 5 briefly covers multidimensional problems and special functions. The last two chapters, Laplace Transforms and Numerical Methods, are discussed in detail. The book is intended for third and fourth year physics and engineering students.




Elementary Applied Partial Differential Equations


Book Description

This work aims to help the beginning student to understand the relationship between mathematics and physical problems, emphasizing examples and problem-solving.




Partial Differential Equations and Boundary Value Problems


Book Description

For introductory courses in PDEs taken by majors in engineering, physics, and mathematics. Packed with examples, this text provides a smooth transition from a course in elementary ordinary differential equations to more advanced concepts in a first course in partial differential equations. Asmar's relaxed style and emphasis on applications make the material understandable even for students with limited exposure to topics beyond calculus. This computer-friendly text encourages the use of computer resources for illustrating results and applications, but it is also suitable for use without computer access. Additional specialized topics are included that are covered independently of each other and can be covered by instructors as desired.




Boundary Value Problems and Fourier Expansions


Book Description

Based on modern Sobolev methods, this text integrates numerical methods and symbolic manipulation into an elegant viewpoint that is consonant with implementation by digital computer. 2004 edition. Includes 64 figures. Exercises.