Fourier Transform and Its Applications Using Microsoft EXCEL®


Book Description

This book demonstrates Microsoft EXCEL-based Fourier transform of selected physics examples. Spectral density of the auto-regression process is also described in relation to Fourier transform. Rather than offering rigorous mathematics, readers will "try and feel" Fourier transform for themselves through the examples. Readers can also acquire and analyze their own data following the step-by-step procedure explained in this book. A hands-on acoustic spectral analysis can be one of the ideal long-term student projects.




Fourier Transform and Its Applications Using Microsoft EXCEL(R)


Book Description

This book demonstrates Microsoft EXCEL(R)-based Fourier transform of selected physics examples, as well as describing spectral density of the auto-regression process in relation to Fourier transform. Rather than offering rigorous mathematics, the book provides readers with an opportunity to gain an understanding of Fourier transform through the examples. They will acquire and analyze their own data following the step-by-step procedure outlined, and a hands-on acoustic spectral analysis is suggested as the ideal long-term student project.




Lectures on the Fourier Transform and Its Applications


Book Description

This book is derived from lecture notes for a course on Fourier analysis for engineering and science students at the advanced undergraduate or beginning graduate level. Beyond teaching specific topics and techniques—all of which are important in many areas of engineering and science—the author's goal is to help engineering and science students cultivate more advanced mathematical know-how and increase confidence in learning and using mathematics, as well as appreciate the coherence of the subject. He promises the readers a little magic on every page. The section headings are all recognizable to mathematicians, but the arrangement and emphasis are directed toward students from other disciplines. The material also serves as a foundation for advanced courses in signal processing and imaging. There are over 200 problems, many of which are oriented to applications, and a number use standard software. An unusual feature for courses meant for engineers is a more detailed and accessible treatment of distributions and the generalized Fourier transform. There is also more coverage of higher-dimensional phenomena than is found in most books at this level.




Handbook of Fourier Analysis & Its Applications


Book Description

Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal processing and related multidimensional transform theory, and quantum physics to elementary deterministic finance and even the foundations of western music theory. As a definitive text on Fourier Analysis, Handbook of Fourier Analysis and Its Applications is meant to replace several less comprehensive volumes on the subject, such as Processing of Multifimensional Signals by Alexandre Smirnov, Modern Sampling Theory by John J. Benedetto and Paulo J.S.G. Ferreira, Vector Space Projections by Henry Stark and Yongyi Yang and Fourier Analysis and Imaging by Ronald N. Bracewell. In addition to being primarily used as a professional handbook, it includes sample problems and their solutions at the end of each section and thus serves as a textbook for advanced undergraduate students and beginning graduate students in courses such as: Multidimensional Signals and Systems, Signal Analysis, Introduction to Shannon Sampling and Interpolation Theory, Random Variables and Stochastic Processes, and Signals and Linear Systems.




The Fourier Transform and Its Applications


Book Description

Groundwork. Convolution. Notation for some useful functions. The impulse symbol. The basic theorems. Doing transforms. The two domains. Electrical waveforms, spectra, and filters. Sampling and series. The laplace transform. Relatives of the fourier transform. Antennas. Television image formation. Convolution in statistics. Noise waveforms. Heat conduction and diffusion. The discrete fourier transform. The discrete hartley transform. The fast hartley transform. Pictorial dictionary of fourier transforms. Supplementary problems. Tables.




Applications of Fourier Transforms to Generalized Functions


Book Description

The generalized function is one of the important branches of mathematics which has enormous applications in practical fields. In particular its applications to the theory of distribution and signal processing are very much essential. In this computer age, information science plays a very important role and the Fourier transform is extremely significant in deciphering obscured information to be made understandable. The book contains six chapters and three appendices. Chapter 1 deals with the preliminary remarks of Fourier series from general point of view. Chapter 2 is concerned with the generalized functions and their Fourier transforms. Chapter 3 contains the Fourier transforms of particular generalized functions. Chapter 4 deals with the asymptotic estimation of Fourier transforms. Chapter 5 is devoted to the study of Fourier series as a series of generalized functions. Chapter 6 deals with the fast Fourier transforms.Appendix A contains the extended list of Fourier transform pairs.Appendix B illustrates the properties of impulse function.Appendix C contains an extended list of biographical references




Fourier Transforms


Book Description

The main purpose of this book is to provide a modern review about recent advances in Fourier transforms as the most powerful analytical tool for high-tech application in electrical, electronic, and computer engineering, as well as Fourier transform spectral techniques with a wide range of biological, biomedical, biotechnological, pharmaceutical, and nanotechnological applications. The confluence of Fourier transform methods with high tech opens new opportunities for detection and handling of atoms and molecules using nanodevices, with potential for a large variety of scientific and technological applications.




Recent Advances in Fourier Analysis and Its Applications


Book Description

This volume contains papers presented at the July, 1989 NATO Advanced Study Institute on Fourier Analysis and its Applications. The conference, held at the beautiful II Ciocco resort near Lucca, in the glorious Tuscany region of northern Italy, created a dynamic in teraction between world-renowned scientists working in the usually disparate communities of pure and applied Fourier analysts. The papers to be found herein include important new results in x-ray crystallography by Nobel Laureate Herbert Hauptman, the application of the new concept of bispectrum to system identification by renowned probabilist Athanasios Papoulis, fascinating appli cations of number theory in Fourier analysis by eminent electrical engineer Manfred R. Schroeder, and exciting concepts regarding polynomials with restricted coefficients by foremost mathematical problem solver Donald J. Newman. The remaining papers further illustrate the inherent power and beauty of classical Fourier analysis, whether the results presented were sought as an end in themselves, or whether these classical methods were employed as a tool in illustrating and solving a particular applied problem. From antenna design to concert hall acoustics to image and speech processing to unimodular polynomi als, each conference participant benefited significantly from his or her exposure, in many cases for the first time, to those scientists on the other end of the spectrum from them selves. The purpose of this volume is to pass those benefits on to the reader.




Fourier Transforms


Book Description

The Fourier transform is one of the most important mathematical tools in a wide variety of fields in science and engineering. In the abstract it can be viewed as the transformation of a signal in one domain (typically time or space) into another domain, the frequency domain. Applications of Fourier transforms, often called Fourier analysis or harmonic analysis, provide useful decompositions of signals into fundamental or "primitive" components, provide shortcuts to the computation of complicated sums and integrals, and often reveal hidden structure in data. Fourier analysis lies at the base of many theories of science and plays a fundamental role in practical engineering design. The origins of Fourier analysis in science can be found in Ptolemy's decomposing celestial orbits into cycles and epicycles and Pythagorus' de composing music into consonances. Its modern history began with the eighteenth century work of Bernoulli, Euler, and Gauss on what later came to be known as Fourier series. J. Fourier in his 1822 Theorie analytique de la Chaleur [16] (still available as a Dover reprint) was the first to claim that arbitrary periodic functions could be expanded in a trigonometric (later called a Fourier) series, a claim that was eventually shown to be incorrect, although not too far from the truth. It is an amusing historical sidelight that this work won a prize from the French Academy, in spite of serious concerns expressed by the judges (Laplace, Lagrange, and Legendre) re garding Fourier's lack of rigor.




Fourier Analysis and Applications


Book Description

The object of this book is two-fold -- on the one hand it conveys to mathematical readers a rigorous presentation and exploration of the important applications of analysis leading to numerical calculations. On the other hand, it presents physics readers with a body of theory in which the well-known formulae find their justification. The basic study of fundamental notions, such as Lebesgue integration and theory of distribution, allow the establishment of the following areas: Fourier analysis and convolution Filters and signal analysis time-frequency analysis (gabor transforms and wavelets). The whole is rounded off with a large number of exercises as well as selected worked-out solutions.