Theory of Nonclassical States of Light


Book Description

The term 'nonclassical states' refers to the quantum states that cannot be produced in the usual sources of light, such as lasers or lamps, rather than those requiring more sophisticated apparatus for their production. Theory of Non-classical States of Light describes the current status of the theory of nonclassical states of light including many new and important results as well as introductory material and the history of the subject. The authors concentrate on the most important types of nonclassical states, namely squeezed, even/odd ('Schrodinger cat') and binomial states, including their generalizations. However, a review of other types of nonclassical is also given in the introduction, and methods for generating nonclassical states on various processes of light-matter interaction, their phase-space description, and the time evolution of nonclassical states in these processes is presented in separate chapters. This contributed volume contains all of the necessary formulae and references required to gain a good understanding of the principles and current status of the field. It will provide a valuable information resource for advanced students and researchers in quantum physics.




Geometric Methods in Physics


Book Description

The Białowieża workshops on Geometric Methods in Physics are among the most important meetings in the field. Every year some 80 to 100 participants from both mathematics and physics join to discuss new developments and to interchange ideas. This volume contains contributions by selected speakers at the XXX meeting in 2011 as well as additional review articles and shows that the workshop remains at the cutting edge of ongoing research. The 2011 workshop focussed on the works of the late Felix A. Berezin (1931–1980) on the occasion of his 80th anniversary as well as on Bogdan Mielnik and Stanisław Lech Woronowicz on their 75th and 70th birthday, respectively. The groundbreaking work of Berezin is discussed from today’s perspective by presenting an overview of his ideas and their impact on further developments. He was, among other fields, active in representation theory, general concepts of quantization and coherent states, supersymmetry and supermanifolds. Another focus lies on the accomplishments of Bogdan Mielnik and Stanisław Lech Woronowicz. Mielnik’s geometric approach to the description of quantum mixed states, the method of quantum state manipulation and their important implications for quantum computing and quantum entanglement are discussed as well as the intricacies of the quantum time operator. Woronowicz’ fruitful notion of a compact quantum group and related topics are also addressed.