Proceedings of the Second International Workshop on Contemporary Problems in Mathematical Physics


Book Description

The following topics are discussed in this volume: recent developments in operator theory, coherent states and wavelet analysis, geometric and topological methods in theoretical physics and quantum field theory, and applications of these methods of mathematical physics to problems in atomic and molecular physics as well as the world of the elementary particles and their fundamental interactions. Two extensive sets of lecture notes on quantization techniques in general, and quantum gauge theories and strings as an avenue towards quantum geometry, are also included. The volume should be of interest to anyone working in a field using the mathematical methods associated with any of these topics.




Contemporary Problems In Mathematical Physics - Proceedings Of The Second International Workshop


Book Description

The following topics are discussed in this volume: recent developments in operator theory, coherent states and wavelet analysis, geometric and topological methods in theoretical physics and quantum field theory, and applications of these methods of mathematical physics to problems in atomic and molecular physics as well as the world of the elementary particles and their fundamental interactions. Two extensive sets of lecture notes on quantization techniques in general, and quantum gauge theories and strings as an avenue towards quantum geometry, are also included. The volume should be of interest to anyone working in a field using the mathematical methods associated with any of these topics.




Lectures on Orthogonal Polynomials and Special Functions


Book Description

Contains graduate-level introductions by international experts to five areas of research in orthogonal polynomials and special functions.




Contemporary Problems In Mathematical Physics - Proceedings Of The First International Workshop


Book Description

The topics discussed include recent developments in operator theory and orthogonal polynomials, coherent states and wavelet analysis, geometric methods in theoretical physics and quantum field theory, and the application of these methods of mathematical physics to problems in atomic and molecular physics as well as the world of the elementary particles and their fundamental interactions. This volume should be of interest to anyone working in a field using the mathematical methods of any of these general topics.




Orthogonal Polynomials


Book Description

The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.




Classical and Quantum Orthogonal Polynomials in One Variable


Book Description

The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.




On the Higher-Order Sheffer Orthogonal Polynomial Sequences


Book Description

On the Higher-Order Sheffer Orthogonal Polynomial Sequences sheds light on the existence/non-existence of B-Type 1 orthogonal polynomials. This book presents a template for analyzing potential orthogonal polynomial sequences including additional higher-order Sheffer classes. This text not only shows that there are no OPS for the special case the B-Type 1 class, but that there are no orthogonal polynomial sequences for the general B-Type 1 class as well. Moreover, it is quite provocative how the seemingly subtle transition from the B-Type 0 class to the B-Type 1 class leads to a drastically more difficult characterization problem. Despite this issue, a procedure is established that yields a definite answer to our current characterization problem, which can also be extended to various other characterization problems as well. Accessible to undergraduate students in the mathematical sciences and related fields, This book functions as an important reference work regarding the Sheffer sequences. The author takes advantage of Mathematica 7 to display unique detailed code and increase the reader's understanding of the implementation of Mathematica 7 and facilitate further experimentation. In addition, this book provides an excellent example of how packages like Mathematica 7 can be used to derive rigorous mathematical results.




Orthogonal Polynomials


Book Description

This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.




Mathematical Reviews


Book Description




Communications in Difference Equations


Book Description

This collection of carefully refereed and edited papers were originally presented at the Fourth International Conference on Difference Equations held in Poznan, Poland. Contributions were from a diverse group of researchers from several countries and featured discussions on the theory of difference equations, open problems and conjectures, as well