Poromechanics IV


Book Description

Based on the Biot conference, named after Maurice Biot and held at Columbia University, this book contains over 170 original papers on different phases of poromechanics in many materials from soils and minerals to human bone. It covers testing and modeling.




Computational Mechanics in Structural Engineering


Book Description

Proceedings of Sino-US Joint Symposium/Workshop on Recent Developments and Future Trends of Computational Mechanics in Structural Engineering, Beijing, China, September 24-28 1991




Domain Decomposition Methods 10


Book Description

This volume contains the proceedings of the Tenth International Conference on Domain Decomposition Methods, which focused on the latest developments in realistic applications in structural mechanics, structural dynamics, computational fluid dynamics, and heat transfer. The proceedings of these conferences have become standard references in the field and contain seminal papers as well as the latest theoretical results and reports on practical applications.







Space Structures 4


Book Description

The diversity of constructions included in this publication on space structures ranges from anten reflectors and masts positioned in space, to equally exciting terrestrial structures, notably large-span domes, barrel vaults, multi-layered grids, cable and membrane systems, and pneumatic structures. This collection of more than two hundred and twenty papers, presented in to volumes, is the work of leading international experts for presentation at the Fourth International Conference on Space Structures. These two volumes contain a prodigious amount of original and innovative information on space structures that will be of especial interest to engineers, architects and other professionals engaged in the planning, design, fabrication and erection of novel constructions.




Computational Mechanics


Book Description




New Prospects in Geotechnical Engineering Aspects of Civil Infrastructures


Book Description

This book presents new studies by a group of researchers and practitioners to address many geotechnical challenges, based on the state-of-the-art practices, innovative technologies, new research results and case histories in construction and design towards safer infrastructures. The book provides an advancement in technologies to incorporate the impact of global climate change, world's population is rising fast and the rate of urbanization on civil infrastructures. Papers were selected from the 5th GeoChina International Conference 2018 – Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held on July 23 to 25, 2018 in HangZhou, China.




Computational Mechanics ’95


Book Description

AI!, in the earlier conferences (Tokyo, 1986; Atlanta, 1988, Melbourne, 1991; and Hong Kong, 1992) the response to the call for presentations at ICES-95 in Hawaii has been overwhelming. A very careful screening of the extended abstracts resulted in about 500 paper being accepted for presentation. Out of these, written versions of about 480 papers reached the conference secretariat in Atlanta in time for inclusion in these proceedings. The topics covered at ICES-95 range over the broadest spectrum of computational engineering science. The editors thank the international scientific committee, for their advice and encouragement in making ICES-95 a successful scientific event. Special thanks are expressed to the International Association for Boundary Elements Methods for hosting IABEM-95 in conjunction with ICES-95. The editors here express their deepest gratitude to Ms. Stacy Morgan for her careful handling of a myriad of details of ICES-95, often times under severe time constraints. The editors hope that the readers of this proceedings will find a kaleidoscopic view of computational engineering in the year 1995, as practiced in various parts of the world. Satya N. Atluri Atlanta, Georgia, USA Genki Yagawa Tokyo,Japan Thomas A. Cruse Nashville, TN, USA Organizing Committee Professor Genki Yagawa, University of Tokyo, Japan, Chair Professor Satya Atluri, Georgia Institute of Technology, U.S.A.




Flow Control


Book Description

The articles in this volume cover recent work in the area of flow control from the point of view of both engineers and mathematicians. These writings are especially timely, as they coincide with the emergence of the role of mathematics and systematic engineering analysis in flow control and optimization. Recently this role has significantly expanded to the point where now sophisticated mathematical and computational tools are being increasingly applied to the control and optimization of fluid flows. These articles document some important work that has gone on to influence the practical, everyday design of flows; moreover, they represent the state of the art in the formulation, analysis, and computation of flow control problems. This volume will be of interest to both applied mathematicians and to engineers.




Disorder and Fracture


Book Description

Fracture, and particularly brittle fracture, is a good example of an instability. For a homogeneous solid, subjected to a uniform stress field, a crack may appear anywhere in the structure once the threshold stress is reached. However, once a crack has been nucleated in some place, further damage in the solid will in most cases propagate from the initial crack, and not somewhere else in the solid. In this sense fracture is an unstable process. This property makes the process extremely sensitive to any heterogeneity present in the medium, which selects the location of the first crack nucleated. In particular, fracture appears to be very sensitive to disorder, which can favor or impede local cracks. Therefore, in most realistic cases, a good description of fracture mechanics should include the effect of disorder. Recently this need has motivated work in this direction starting from the usual description of fracture mechanics. Parallel with this first trend, statistical physics underwent a very important development in the description of disordered systems. In particular, let us mention the emergence of some "new" concepts (such as fractals, scaling laws, finite size effects, and so on) in this field. However, many models considered were rather simple and well adapted to theoretical or numerical introduction into a complex body of problems. An example of this can be found in percolation theory. This area is now rather well understood and accurately described.