Fractal Functions, Dimensions and Signal Analysis


Book Description

This book introduces the fractal interpolation functions (FIFs) in approximation theory to the readers and the concerned researchers in advanced level. FIFs can be used to precisely reconstruct the naturally occurring functions when compared with the classical interpolants. The book focuses on the construction of fractals in metric space through various iterated function systems. It begins by providing the Mathematical background behind the fractal interpolation functions with its graphical representations and then introduces the fractional integral and fractional derivative on fractal functions in various scenarios. Further, the existence of the fractal interpolation function with the countable iterated function system is demonstrated by taking suitable monotone and bounded sequences. It also covers the dimension of fractal functions and investigates the relationship between the fractal dimension and the fractional order of fractal interpolation functions. Moreover, this book explores the idea of fractal interpolation in the reconstruction scheme of illustrative waveforms and discusses the problems of identification of the characterizing parameters. In the application section, this research compendium addresses the signal processing and its Mathematical methodologies. A wavelet-based denoising method for the recovery of electroencephalogram (EEG) signals contaminated by nonstationary noises is presented, and the author investigates the recognition of healthy, epileptic EEG and cardiac ECG signals using multifractal measures. This book is intended for professionals in the field of Mathematics, Physics and Computer Science, helping them broaden their understanding of fractal functions and dimensions, while also providing the illustrative experimental applications for researchers in biomedicine and neuroscience.




Frontiers of Fractal Analysis


Book Description

The history of describing natural objects using geometry is as old as the advent of science itself, in which traditional shapes are the basis of our intuitive understanding of geometry. However, nature is not restricted to such Euclidean objects which are only characterized typically by integer dimensions. Hence, the conventional geometric approach cannot meet the requirements of solving or analysing nonlinear problems which are related with natural phenomena, therefore, the fractal theory has been born, which aims to understand complexity and provide an innovative way to recognize irregularity and complex systems. Although the concepts of fractal geometry have found wide applications in many forefront areas of science, engineering and societal issues, they also have interesting implications of a more practical nature for the older classical areas of science. Since its discovery, there has been a surge of research activities in using this powerful concept in almost every branch of scientific disciplines to gain deep insights into many unresolved problems. This book includes eight chapters which focus on gathering cutting-edge research and proposing application of fractals features in both traditional scientific disciplines and in applied fields.




Applied Analysis, Optimization and Soft Computing


Book Description

This book contains select contributions presented at the International Conference on Nonlinear Applied Analysis and Optimization (ICNAAO-2021), held at the Department of Mathematics Sciences, Indian Institute of Technology (BHU) Varanasi, India, from 21–23 December 2021. The book discusses topics in the areas of nonlinear analysis, fixed point theory, dynamical systems, optimization, fractals, applications to differential/integral equations, signal and image processing, and soft computing, and exposes the young talents with the newer dimensions in these areas with their practical approaches and to tackle the real-life problems in engineering, medical and social sciences. Scientists from the U.S.A., Austria, France, Mexico, Romania, and India have contributed their research. All the submissions are peer reviewed by experts in their fields.




Applied Fractional Calculus in Identification and Control


Book Description

The book investigates the fractional calculus-based approaches and their benefits to adopting in complex real-time areas. Another objective is to provide initial solutions for new areas where fractional theory has yet to verify the expertise. The book focuses on the latest scientific interest and illustrates the basic idea of general fractional calculus with MATLAB codes. This book is ideal for researchers working on fractional calculus theory both in simulation and hardware. Researchers from academia and industry working or starting research in applied fractional calculus methods will find the book most useful. The scope of this book covers most of the theoretical and practical studies on linear and nonlinear systems using fractional-order integro-differential operators.




Fractal Signatures in the Dynamics of an Epidemiology


Book Description

The recent Covid-19 pandemic threw the world into complete chaos with its rapid and devastating spread. Scientists are still trying to obtain a better understanding of the patterns of COVID-19 and trying to get a deeper understanding of mutant strains and their pathogenicity by performing genomic sequences of more samples. Fractal-based analysis provides its unique forecasting policy to reduce the spread of COVID-19, and in general, of any outbreaks. The book presents fractal and multifractal models of COVID-19 and reviews the impact of the pandemic including epidemiology, genome organization, transmission cycle, and control strategies based on mathematical models towards developing an immune intervention. Also, it covers non-clinical aspects such as economic development with graphical illustrations, meeting the needs of onlookers outside the sector who desire additional information on the epidemic. The fractal signatures describe the fractal textures in the patterns of Corona virus. Studies on the epidemiology of Covid-19 in relation with the fractals and fractal functions serve to exhibit its irregular chaotic nature. Moreover, the book with its wide coverage on the Hurst exponent analysis and the fractal dimension estimation, greatly aids in measuring the epidemiology.




Mathematics and Computing


Book Description

This book comprises select peer-reviewed articles submitted for the proceedings of the International Conference on Mathematics and Computing (ICMC 2022), held by the School of Advanced Sciences, Vellore Institute of Technology, Vellore, India, in association with Ramanujan Mathematical Society, India, Cryptology Research Society of India and Society for Electronic Transactions and Security, India, from 6–8 January 2022. With an aim to identify the existing challenges in the areas of mathematics and computing, the book emphasizes the importance of establishing new methods and algorithms to address these challenges. The book includes topics on diverse applications of cryptology, network security, cyber security, block chain, IoT, mobile network, data analytics, applied algebra, mathematical analysis, mathematical modelling, fluid dynamics, fractional calculus, multi-optimization, integral equations, dynamical systems, numerical analysis and scientific computing. Divided into five major parts—applied algebra and analysis, fractional calculus and integral equations, mathematical modelling and fluid dynamics, numerical analysis, and computer science and applications—the book is a useful resource for students, researchers and faculty as well as practitioners.




Fractal Patterns with MATLAB


Book Description

This book presents the iterative beauty of fractals and fractal functions graphically with the aid of MATLAB programming. The fractal images generated using the MATLAB codes provide visual delight and highly encourage the fractal lovers for creative thinking. The book compiles five cutting-edge research chapters, each with state-of-the art fractal illustrations. It starts with the fundamental theory for the construction of fractal sets via the deterministic iteration algorithm. Incorporating the theoretical base, fractal illustrations of elementary fractal sets are provided with the explicit MATLAB code. The book gives examples of MATLAB codes to present the fractal surfaces. This book is contributed to all the research beginners as well as the professionals on the field of fractal analysis. As it covers basic fractals like Sierpinski triangle to advanced fractal functions with explicit MATLAB code, the presented fractal illustrations hopefully benefit even the non-field readers. The book is a useful course to all the research beginners on the fractal and fractal-related fields.







Fractal Physiology


Book Description

I know that most men, including those at ease with the problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. Joseph Ford quoting Tolstoy (Gleick, 1987) We are used to thinking that natural objects have a certain form and that this form is determined by a characteristic scale. If we magnify the object beyond this scale, no new features are revealed. To correctly measure the properties of the object, such as length, area, or volume, we measure it at a resolution finer than the characteristic scale of the object. We expect that the value we measure has a unique value for the object. This simple idea is the basis of the calculus, Euclidean geometry, and the theory of measurement. However, Mandelbrot (1977, 1983) brought to the world's attention that many natural objects simply do not have this preconceived form. Many of the structures in space and processes in time of living things have a very different form. Living things have structures in space and fluctuations in time that cannot be characterized by one spatial or temporal scale. They extend over many spatial or temporal scales.




Fractal Dimensions of Networks


Book Description

Current interest in fractal dimensions of networks is the result of more than a century of previous research on dimensions. Fractal Dimensions of Networks ties the theory and methods for computing fractal dimensions of networks to the “classic” theory of dimensions of geometric objects. The goal of the book is to provide a unified treatment of fractal dimensions of sets and networks. Since almost all of the major concepts in fractal dimensions originated in the study of sets, the book achieves this goal by first clearly presenting, with an abundance of examples and illustrations, the theory and algorithms for sets, and then showing how the theory and algorithms have been applied to networks. Thus, the book presents the classical theory and algorithms for the box counting dimension for sets, and then presents the box counting dimension for networks. All the major fractal dimensions are studied, e.g., the correlation dimension, the information dimension, the Hausdorff dimension, the multifractal spectrum, as well as many lesser known dimensions. Algorithm descriptions are accompanied by worked examples, many applications of the methods are presented, and many exercises, ranging in difficulty from easy to research level, are included.