Measure, Topology, and Fractal Geometry


Book Description

From the reviews: "In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. However, the book also contains many good illustrations of fractals (including 16 color plates), together with Logo programs which were used to generate them. ... Here then, at last, is an answer to the question on the lips of so many: 'What exactly is a fractal?' I do not expect many of this book's readers to achieve a mature understanding of this answer to the question, but anyone interested in finding out about the mathematics of fractal geometry could not choose a better place to start looking." #Mathematics Teaching#1




Fractal Geometry and Analysis


Book Description

This ASI- which was also the 28th session of the Seminaire de mathematiques superieures of the Universite de Montreal - was devoted to Fractal Geometry and Analysis. The present volume is the fruit of the work of this Advanced Study Institute. We were fortunate to have with us Prof. Benoit Mandelbrot - the creator of numerous concepts in Fractal Geometry - who gave a series of lectures on multifractals, iteration of analytic functions, and various kinds of fractal stochastic processes. Different foundational contributions for Fractal Geometry like measure theory, dy namical systems, iteration theory, branching processes are recognized. The geometry of fractal sets and the analytical tools used to investigate them provide a unifying theme of this book. The main topics that are covered are then as follows. Dimension Theory. Many definitions of fractional dimension have been proposed, all of which coincide on "regular" objects, but often take different values for a given fractal set. There is ample discussion on piecewise estimates yielding actual values for the most common dimensions (Hausdorff, box-counting and packing dimensions). The dimension theory is mainly discussed by Mendes-France, Bedford, Falconer, Tricot and Rata. Construction of fractal sets. Scale in variance is a fundamental property of fractal sets.




Fractals in Probability and Analysis


Book Description

A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.




Fractal Geometry, Complex Dimensions and Zeta Functions


Book Description

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.




Fractal Geometry and Stochastics VI


Book Description

This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry. Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation. Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers.




The Fractal Geometry of Nature


Book Description

Written in a style that is accessible to a wide audience, The Fractal Geometry of Nature inspired popular interest in this emerging field. Mandelbrot's unique style, and rich illustrations will inspire readers of all backgrounds.




Geometry and Analysis of Fractals


Book Description

This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.




Fractals: A Very Short Introduction


Book Description

Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




The Geometry of Fractal Sets


Book Description

A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence of tangents of such sets as well as the dimensional properties of their projections in various directions.




Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot


Book Description

This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.