Fractional Calculus with its Applications in Engineering and Technology


Book Description

This book aims to provide the basic theory of fractional calculus and its applications based on practical schemes and approaches, illustrated with applicable engineering and technical examples, especially focusing on the fractional-order controller design. In the development of this book, the essential theorems and facts in the first two chapters are proven with rigorous mathematical analyses. In addition, the commonly used definitions of Grünwald-Letnikov, Riemann-Liouville, Caputo, and Miller-Ross fractional derivatives are introduced with their properties proved and linked to fractional-order controller design. The last chapter presents several enlightening scenarios of fractional-order control designs, for example, the suppression of machining chatter, the nonlinear motion control of a multilink robot, the simultaneous tracking and stabilization control of a rotary inverted pendulum, and the idle speed control of an internal combustion engine (ICE).




Fractional Calculus


Book Description

The first volume of this two-volume book, presents history, the mathematical modelling and the applications of fractional order systems, and contains mathematical and theoretical studies and research related to this domain. This volume is made up of 11 chapters. The first chapter presents an analysis of the Caputo derivative and the pseudo state representation with the infinite state approach. The second chapter studies the stability of a class of fractional Cauchy problems. The third chapter shows how to solve fractional order differential equations and fractional order partial differential equations using modern matrix algebraic approaches. Following this chapter, chapter four proposes another analytical method to solve differential equations with local fractional derivative operators. Concerning chapter five, it presents the extended Borel transform and its related fractional analysis. After presenting the analytical resolution methods for fractional calculus, chapter six shows the essentials of fractional calculus on discrete settings. The initialisation of such systems is shown in chapter seven. In fact, this chapter presents a generalised application of the Hankel operator for initialisation of fractional order systems. The last four chapters show some new studies and applications of non-integer calculus. In fact, chapter eight presents the fractional reaction-transport equations and evanescent continuous time random walks. Chapter nine shows a novel approach in the exponential integrators for fractional differential equations. Chapter ten presents the non-fragile tuning of fractional order PD controllers for integrating time delay systems. At the end, chapter eleven proposes a discrete finite-dimensional approximation of linear infinite dimensional systems. To sum up, this volume presents a mathematical and theoretical study of fractional calculus along with a stability study and some applications. This volume ends up with some new techniques and methods applied in fractional calculus. This volume will be followed up by a second volume that focuses on the applications of fractional calculus in several engineering domains.




Fractional Calculus with its Applications in Engineering and Technology


Book Description

This book aims to provide the basic theory of fractional calculus and its applications based on practical schemes and approaches, illustrated with applicable engineering and technical examples, especially focusing on the fractional-order controller design. In the development of this book, the essential theorems and facts in the first two chapters are proven with rigorous mathematical analyses. In addition, the commonly used definitions of Grünwald-Letnikov, Riemann-Liouville, Caputo, and Miller-Ross fractional derivatives are introduced with their properties proved and linked to fractional-order controller design. The last chapter presents several enlightening scenarios of fractional-order control designs, for example, the suppression of machining chatter, the nonlinear motion control of a multilink robot, the simultaneous tracking and stabilization control of a rotary inverted pendulum, and the idle speed control of an internal combustion engine (ICE).




Fractional Calculus and Fractional Processes with Applications to Financial Economics


Book Description

Fractional Calculus and Fractional Processes with Applications to Financial Economics presents the theory and application of fractional calculus and fractional processes to financial data. Fractional calculus dates back to 1695 when Gottfried Wilhelm Leibniz first suggested the possibility of fractional derivatives. Research on fractional calculus started in full earnest in the second half of the twentieth century. The fractional paradigm applies not only to calculus, but also to stochastic processes, used in many applications in financial economics such as modelling volatility, interest rates, and modelling high-frequency data. The key features of fractional processes that make them interesting are long-range memory, path-dependence, non-Markovian properties, self-similarity, fractal paths, and anomalous diffusion behaviour. In this book, the authors discuss how fractional calculus and fractional processes are used in financial modelling and finance economic theory. It provides a practical guide that can be useful for students, researchers, and quantitative asset and risk managers interested in applying fractional calculus and fractional processes to asset pricing, financial time-series analysis, stochastic volatility modelling, and portfolio optimization. - Provides the necessary background for the book's content as applied to financial economics - Analyzes the application of fractional calculus and fractional processes from deterministic and stochastic perspectives




New Trends in Nanotechnology and Fractional Calculus Applications


Book Description

In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.




Fractional Calculus in Medical and Health Science


Book Description

This book covers applications of fractional calculus used for medical and health science. It offers a collection of research articles built into chapters on classical and modern dynamical systems formulated by fractional differential equations describing human diseases and how to control them. The mathematical results included in the book will be helpful to mathematicians and doctors by enabling them to explain real-life problems accurately. The book will also offer case studies of real-life situations with an emphasis on describing the mathematical results and showing how to apply the results to medical and health science, and at the same time highlighting modeling strategies. The book will be useful to graduate level students, educators and researchers interested in mathematics and medical science.




Fractional Order Systems and Applications in Engineering


Book Description

Fractional Order Systems and Applications in Engineering presents the use of fractional calculus (calculus of non-integer order) in the description and modelling of systems and in a range of control design and practical applications. The book covers the fundamentals of fractional calculus together with some analytical and numerical techniques, and provides MATLAB® codes for the simulation of fractional-order control (FOC) systems. The use of fractional calculus can improve and generalize well-established control methods and strategies. Many different FOC schemes are presented for control and dynamic systems problems. These extend to the challenging control engineering design problems of robust and nonlinear control. Practical material relating to a wide variety of applications including, among others, mechatronics, civil engineering, irrigation and water management, and biological systems is also provided. All the control schemes and applications are presented with either system simulation results or real experimental results, or both. Fractional Order Systems and Applications in Engineering introduces readers to the essentials of FOC and imbues them with a basic understanding of FOC concepts and methods. With this knowledge readers can extend their use of FOC in other industrial system applications, thereby expanding their range of disciplines by exploiting this versatile new set of control techniques. - Provides the most recent and up-to-date developments on the Fractional-order Systems and their analyzing process - Integrates recent advancements of modeling of real phenomena (on Fractional-order Systems) via different-different mathematical equations with demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering - Provides readers with illustrative examples of how to use the presented theories of Fractional-order Systems in specific cases with associated MATLAB code




The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order


Book Description

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering




Fractional-order Systems and Controls


Book Description

Fractional-order Systems and Controls details the use of fractional calculus in the description and modeling of systems, and in a range of control design and practical applications. It is largely self-contained, covering the fundamentals of fractional calculus together with some analytical and numerical techniques and providing MATLAB® codes for the simulation of fractional-order control (FOC) systems. Many different FOC schemes are presented for control and dynamic systems problems. Practical material relating to a wide variety of applications is also provided. All the control schemes and applications are presented in the monograph with either system simulation results or real experimental results, or both. Fractional-order Systems and Controls provides readers with a basic understanding of FOC concepts and methods, so they can extend their use of FOC in other industrial system applications, thereby expanding their range of disciplines by exploiting this versatile new set of control techniques.




Fractional Calculus with Applications for Nuclear Reactor Dynamics


Book Description

Introduces Novel Applications for Solving Neutron Transport EquationsWhile deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous way