Fractional Differential Equations, Inclusions and Inequalities with Applications


Book Description

During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering.




Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities


Book Description

This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.




Fractional-Order Equations and Inclusions


Book Description

This book presents fractional difference, integral, differential, evolution equations and inclusions, and discusses existence and asymptotic behavior of their solutions. Controllability and relaxed control results are obtained. Combining rigorous deduction with abundant examples, it is of interest to nonlinear science researchers using fractional equations as a tool, and physicists, mechanics researchers and engineers studying relevant topics. Contents Fractional Difference Equations Fractional Integral Equations Fractional Differential Equations Fractional Evolution Equations: Continued Fractional Differential Inclusions




Nonlocal Nonlinear Fractional-order Boundary Value Problems


Book Description

There has been a great advancement in the study of fractional-order nonlocal nonlinear boundary value problems during the last few decades. The interest in the subject of fractional-order boundary value problems owes to the extensive application of fractional differential equations in many engineering and scientific disciplines. Fractional-order differential and integral operators provide an excellent instrument for the description of memory and hereditary properties of various materials and processes, which contributed significantly to the popularity of the subject and motivated many researchers and modelers to shift their focus from classical models to fractional order models. Some peculiarities of physical, chemical or other processes happening inside the domain cannot be formulated with the aid of classical boundary conditions. This limitation led to the consideration of nonlocal and integral conditions which relate the boundary values of the unknown function to its values at some interior positions of the domain.The main objective for writing this book is to present some recent results on single-valued and multi-valued boundary value problems, involving different kinds of fractional differential and integral operators, and several kinds of nonlocal multi-point, integral, integro-differential boundary conditions. Much of the content of this book contains the recent research published by the authors on the topic.




Fractional Differential Equations


Book Description

This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives




Fractional Differential Equations


Book Description

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.




The Analysis of Fractional Differential Equations


Book Description

Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.




Integral Transforms and Operational Calculus


Book Description

Researches and investigations involving the theory and applications of integral transforms and operational calculus are remarkably wide-spread in many diverse areas of the mathematical, physical, chemical, engineering and statistical sciences. This Special Issue contains a total of 36 carefully-selected and peer-reviewed articles which are authored by established researchers from many countries. Included in this Special Issue are review, expository and original research articles dealing with the recent advances on the topics of integral transforms and operational calculus as well as their multidisciplinary applications




Recent Investigations of Differential and Fractional Equations and Inclusions


Book Description

During the past decades, the subject of calculus of integrals and derivatives of any arbitrary real or complex order has gained considerable popularity and impact. This is mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. In connection with this, great importance is attached to the publication of results that focus on recent and novel developments in the theory of any types of differential and fractional differential equation and inclusions, especially covering analytical and numerical research for such kinds of equations. This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic of “Recent Investigations of Differential and Fractional Equations and Inclusions”. It contains some theoretical works and approximate methods in fractional differential equations and inclusions as well as fuzzy integrodifferential equations. Many of the papers were supported by the Bulgarian National Science Fund under Project KP-06-N32/7. Overall, the volume is an excellent witness of the relevance of the theory of fractional differential equations.




Integro-Differential Equations


Book Description

This book delves into semilinear evolution equations, impulsive differential equations, and integro-differential equations with different types of delay. The main objective is to investigate the existence of solutions and explore their approximate controllability, complete controllability, and attractivity. The study involves boundary conditions, nonlocal conditions, and impulsive conditions. The analysis presented in this book goes beyond traditional solutions and encompasses the study of solutions that are asymptotically almost automorphic and integro-differential equations with impulsive effects in both bounded and unbounded domains. The book also contains applications to nuclear physics, elementary particle physics, chemical engineering, and economics. This book is intended for researchers and professionals in the field of mathematics, physics and industrial engineering, as well as advanced graduate students.