Local Fractional Integral Transforms and Their Applications


Book Description

Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms. - Provides applications of local fractional Fourier Series - Discusses definitions for local fractional Laplace transforms - Explains local fractional Laplace transforms coupled with analytical methods




Fractional Integral Transforms


Book Description

Fractional Integral Transforms: Theory and Applications presents over twenty-five integral transforms, many of which have never before been collected in one single volume. Some transforms are classic, such as Laplace, Fourier, etc, and some are relatively new, such as the Fractional Fourier, Gyrator, Linear Canonical, Special Affine Fourier Transforms, as well as, continuous Wavelet, Ridgelet, and Shearlet transforms. The book provides an overview of the theory of fractional integral transforms with examples of such transforms, before delving deeper into the study of important fractional transforms, including the fractional Fourier transform. Applications of fractional integral transforms in signal processing and optics are highlighted. The book’s format has been designed to make it easy for readers to extract the essential information they need to learn the about the fundamental properties of each transform. Supporting proofs and explanations are given throughout. Features Brings together integral transforms never before collected into a single volume A useful resource on fractional integral transforms for researchers and graduate students in mathematical analysis, applied mathematics, physics and engineering Written in an accessible style with detailed proofs and emphasis on providing the reader with an easy access to the essential properties of important fractional integral transforms Ahmed I. Zayed is a Professor of Mathematics at the Department of Mathematical Sciences, DePaul University, Chicago, and was the Chair of the department for 20 years, from 2001 until 2021. His research interests varied over the years starting with generalized functions and distributions to sampling theory, applied harmonic analysis, special functions and integral transforms. He has published two books and edited seven research monographs. He has written 22 book chapters, published 118 research articles, and reviewed 173 publications for the Mathematical Review and 81 for the Zentralblatt für Mathematik (zbMath). He has served on the Editorial Boards of 22 scientific research journals and has refereed over 200 research papers submitted to prestigious journals, among them are IEEE, SIAM, Amer. Math. Soc., Math Physics, and Optical Soc. Journals.




Applications Of Fractional Calculus In Physics


Book Description

Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.




Fractional Differential Equations


Book Description

This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'.This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models.In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research.A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. - A unique survey of many applications of fractional calculus - Presents basic theory - Includes a unified presentation of selected classical results, which are important for applications - Provides many examples - Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory - The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches - Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives




Integral Transformations, Operational Calculus and Their Applications


Book Description

This volume consists of a collection of 14 accepted submissions (including several invited feature articles) to the Special Issue of MDPI's journal Symmetry on the general subject area of integral transformations, operational calculus and their applications from many different parts around the world. The main objective of the Special Issue was to gather review, expository, and original research articles dealing with the state-of-the-art advances in integral transformations and operational calculus as well as their multidisciplinary applications, together with some relevance to the aspect of symmetry. Various families of fractional-order integrals and derivatives have been found to be remarkably important and fruitful, mainly due to their demonstrated applications in numerous diverse and widespread areas of mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables.




Theory and Applications of Fractional Differential Equations


Book Description

This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.




Special Functions for Applied Scientists


Book Description

This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.




Generalized Fractional Calculus and Applications


Book Description

In this volume various applications are discussed, in particular to the hyper-Bessel differential operators and equations, Dzrbashjan-Gelfond-Leontiev operators and Borel type transforms, convolutions, new representations of hypergeometric functions, solutions to classes of differential and integral equations, transmutation method, and generalized integral transforms. Some open problems are also posed. This book is intended for graduate and post-graduate students, lecturers, researchers and others working in applied mathematical analysis, mathematical physics and related disciplines.




Basic Theory


Book Description

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This first volume collects authoritative chapters covering the mathematical theory of fractional calculus, including fractional-order operators, integral transforms and equations, special functions, calculus of variations, and probabilistic and other aspects.




Fractional Integrals and Potentials


Book Description

This volume presents recent developments in the fractional calculus of functions of one and several real variables, and shows the relation of this field to a variety of areas in pure and applied mathematics. Beyond some basic properties of fractional integrals in one and many dimensions, it contains a mathematical theory of certain important weakly singular integral equations of the first kind arising in mechanics, diffraction theory and other areas of mathematical physics. The author focuses on explicit inversion formulae that can be obtained by making use of the classical Marchaudís approach and its generalization, leading to wavelet type representations.