Fractional Integrals and Potentials


Book Description

This volume presents recent developments in the fractional calculus of functions of one and several real variables, and shows the relation of this field to a variety of areas in pure and applied mathematics. Beyond some basic properties of fractional integrals in one and many dimensions, it contains a mathematical theory of certain important weakly singular integral equations of the first kind arising in mechanics, diffraction theory and other areas of mathematical physics. The author focuses on explicit inversion formulae that can be obtained by making use of the classical Marchaudís approach and its generalization, leading to wavelet type representations.




Fractional Integrals, Potentials, and Radon Transforms


Book Description

Fractional Integrals, Potentials, and Radon Transforms, Second Edition presents recent developments in the fractional calculus of functions of one and several real variables, and shows the relation of this field to a variety of areas in pure and applied mathematics. In this thoroughly revised new edition, the book aims to explore how fractional integrals occur in the study of diverse Radon type transforms in integral geometry. Beyond some basic properties of fractional integrals in one and many dimensions, this book also contains a mathematical theory of certain important weakly singular integral equations of the first kind arising in mechanics, diffraction theory and other areas of mathematical physics. The author focuses on explicit inversion formulae that can be obtained by making use of the classical Marchaud’s approach and its generalization, leading to wavelet type representations. New to this Edition Two new chapters and a new appendix, related to Radon transforms and harmonic analysis of linear operators commuting with rotations and dilations have been added. Contains new exercises and bibliographical notes along with a thoroughly expanded list of references. This book is suitable for mathematical physicists and pure mathematicians researching in the area of integral equations, integral transforms, and related harmonic analysis.




Methods of Fourier Analysis and Approximation Theory


Book Description

Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.




Hypersingular Integrals and Their Applications


Book Description

Hypersingular integrals arise as constructions inverse to potential-type operators and are realized by the methods of regularization and finite differences. This volume develops these approaches in a comprehensive treatment of hypersingular integrals and their applications. The author is a renowned expert on the topic. He explains the basics before building more sophisticated ideas, and his discussions include a description of hypersingular integrals as they relate to functional spaces. Hypersingular Integrals and Their Applications also presents recent results and applications that will prove valuable to graduate students and researchers working in mathematical analysis.




Mathematical Analysis, its Applications and Computation


Book Description

This volume includes the main contributions by the plenary speakers from the ISAAC congress held in Aveiro, Portugal, in 2019. It is the purpose of ISAAC to promote analysis, its applications, and its interaction with computation. Analysis is understood here in the broad sense of the word, including differential equations, integral equations, functional analysis, and function theory. With this objective, ISAAC organizes international Congresses for the presentation and discussion of research on analysis. The plenary lectures in the present volume, authored by eminent specialists, are devoted to some exciting recent developments in topics such as science data, interpolating and sampling theory, inverse problems, and harmonic analysis.




Bounded and Compact Integral Operators


Book Description

The monograph presents some of the authors' recent and original results concerning boundedness and compactness problems in Banach function spaces both for classical operators and integral transforms defined, generally speaking, on nonhomogeneous spaces. Itfocuses onintegral operators naturally arising in boundary value problems for PDE, the spectral theory of differential operators, continuum and quantum mechanics, stochastic processes etc. The book may be considered as a systematic and detailed analysis of a large class of specific integral operators from the boundedness and compactness point of view. A characteristic feature of the monograph is that most of the statements proved here have the form of criteria. These criteria enable us, for example, togive var ious explicit examples of pairs of weighted Banach function spaces governing boundedness/compactness of a wide class of integral operators. The book has two main parts. The first part, consisting of Chapters 1-5, covers theinvestigation ofclassical operators: Hardy-type transforms, fractional integrals, potentials and maximal functions. Our main goal is to give a complete description of those Banach function spaces in which the above-mentioned operators act boundedly (com pactly). When a given operator is not bounded (compact), for example in some Lebesgue space, we look for weighted spaces where boundedness (compact ness) holds. We develop the ideas and the techniques for the derivation of appropriate conditions, in terms of weights, which are equivalent to bounded ness (compactness).




Clifford Algebras and their Applications in Mathematical Physics


Book Description

This International Conference on Clifford AlgebrfU and Their Application, in Math ematical Phy,ic, is the third in a series of conferences on this theme, which started at the Univer,ity of Kent in Canterbury in 1985 and was continued at the Univer,iU de, Science, et Technique, du Languedoc in Montpellier in 1989. Since the start of this series of Conferences the research fields under consideration have evolved quite a lot. The number of scientific papers on Clifford Algebra, Clifford Analysis and their impact on the modelling of physics phenomena have increased tremendously and several new books on these topics were published. We were very pleased to see old friends back and to wellcome new guests who by their inspiring talks contributed fundamentally to tracing new paths for the future development of this research area. The Conference was organized in Deinze, a small rural town in the vicinity of the University town Gent. It was hosted by De Ceder, a vacation and seminar center in a green area, a typical landscape of Flanders's "plat pays" . The Conference was attended by 61 participants coming from 18 countries; there were 10 main talks on invitation, 37 contributions accepted by the Organizing Com mittee and a poster session. There was also a book display of Kluwer Academic Publishers. As in the Proceedings of the Canterbury and Montpellier conferences we have grouped the papers accordingly to the themes they are related to: Clifford Algebra, Clifford Analysis, Classical Mechanics, Mathematical Physics and Physics Models.




Fractional Dynamics


Book Description

"Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and an Associate Professor at Applied Mathematics and Physics Department of Moscow Aviation Institute.




Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs


Book Description

The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.