Fractional-Order Nonlinear Systems


Book Description

"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. Ivo Petráš is an Associate Professor of automatic control and the Director of the Institute of Control and Informatization of Production Processes, Faculty of BERG, Technical University of Košice, Slovak Republic. His main research interests include control systems, industrial automation, and applied mathematics.




Fractional Order Systems


Book Description

This book aims to propose implementations and applications of Fractional Order Systems (FOS). It is well known that FOS can be applied in control applications and systems modeling, and their effectiveness has been proven in many theoretical works and simulation routines. A further and mandatory step for FOS real world utilization is their hardware implementation and applications on real systems modeling. With this viewpoint, introductive chapters on FOS are included, on the definition of stability region of Fractional Order PID Controller and Chaotic FOS, followed by the practical implementation based on Microcontroller, Field Programmable Gate Array, Field Programmable Analog Array and Switched Capacitor. Another section is dedicated to FO modeling of Ionic Polymeric Metal Composite (IPMC). This new material may have applications in robotics, aerospace and biomedicine.




Fractional Order Systems


Book Description

Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications consists of 21 contributed chapters by subject experts. Chapters offer practical solutions and novel methods for recent research problems in the multidisciplinary applications of fractional order systems, such as FPGA, circuits, memristors, control algorithms, photovoltaic systems, robot manipulators, oscillators, etc. This book is ideal for researchers working in the modeling and applications of both continuous-time and discrete-time dynamics and chaotic systems. Researchers from academia and industry who are working in research areas such as control engineering, electrical engineering, mechanical engineering, computer science, and information technology will find the book most informative. - Discusses multi-disciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results - Includes new circuits and systems based on the new nonlinear elements - Covers most of the linear and nonlinear fractional-order theorems that will solve many scientific issues for researchers - Closes the gap between theoretical approaches and real-world applications - Provides MATLAB® and Simulink code for many of the applications in the book




Fractional Order Systems—Control Theory and Applications


Book Description

This book aims to bring together the latest innovative knowledge, analysis, and synthesis of fractional control problems of nonlinear systems as well as some related applications. Fractional order systems (FOS) are dynamical systems that can be modelled by a fractional differential equation carried with a non-integer derivative. In the last few decades, the growth of science and engineering systems has considerably stimulated the employment of fractional calculus in many subjects of control theory, for example, in stability, stabilization, controllability, observability, observer design, and fault estimation. The application of control theory in FOS is an important issue in many engineering applications. So, to accurately describe these systems, the fractional order differential equations have been introduced.




Finite-Time Stability: An Input-Output Approach


Book Description

Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.




Fractional-Order Control Systems


Book Description

This book explains the essentials of fractional calculus and demonstrates its application in control system modeling, analysis and design. It presents original research to find high-precision solutions to fractional-order differentiations and differential equations. Numerical algorithms and their implementations are proposed to analyze multivariable fractional-order control systems. Through high-quality MATLAB programs, it provides engineers and applied mathematicians with theoretical and numerical tools to design control systems. Contents Introduction to fractional calculus and fractional-order control Mathematical prerequisites Definitions and computation algorithms of fractional-order derivatives and Integrals Solutions of linear fractional-order differential equations Approximation of fractional-order operators Modelling and analysis of multivariable fractional-order transfer function Matrices State space modelling and analysis of linear fractional-order Systems Numerical solutions of nonlinear fractional-order differential Equations Design of fractional-order PID controllers Frequency domain controller design for multivariable fractional-order Systems Inverse Laplace transforms involving fractional and irrational Operations FOTF Toolbox functions and models Benchmark problems for the assessment of fractional-order differential equation algorithms




Fractional-order Systems and Controls


Book Description

Fractional-order Systems and Controls details the use of fractional calculus in the description and modeling of systems, and in a range of control design and practical applications. It is largely self-contained, covering the fundamentals of fractional calculus together with some analytical and numerical techniques and providing MATLAB® codes for the simulation of fractional-order control (FOC) systems. Many different FOC schemes are presented for control and dynamic systems problems. Practical material relating to a wide variety of applications is also provided. All the control schemes and applications are presented in the monograph with either system simulation results or real experimental results, or both. Fractional-order Systems and Controls provides readers with a basic understanding of FOC concepts and methods, so they can extend their use of FOC in other industrial system applications, thereby expanding their range of disciplines by exploiting this versatile new set of control techniques.




Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems


Book Description

In the recent years, fractional-order systems have been studied by many researchers in the engineering field. It was found that many systems can be described more accurately by fractional differential equations than by integer-order models. Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems is a scholarly publication that explores new developments related to novel chaotic fractional-order systems, control schemes, and their applications. Featuring coverage on a wide range of topics including chaos synchronization, nonlinear control, and cryptography, this publication is geared toward engineers, IT professionals, researchers, and upper-level graduate students seeking current research on chaotic fractional-order systems and their applications in engineering and computer science.




Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations


Book Description

The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.




Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach


Book Description

In the last two decades fractional differential equations have been used more frequently in physics, signal processing, fluid mechanics, viscoelasticity, mathematical biology, electro chemistry and many others. It opens a new and more realistic way to capture memory dependent phenomena and irregularities inside the systems by using more sophisticated mathematical analysis. This monograph is based on the authors’ work on stabilization and control design for continuous and discrete fractional order systems. The initial two chapters and some parts of the third chapter are written in tutorial fashion, presenting all the basic concepts of fractional order system and a brief overview of sliding mode control of fractional order systems. The other parts contain deal with robust finite time stability of fractional order systems, integral sliding mode control of fractional order systems, co-operative control of multi-agent systems modeled as fractional differential equation, robust stabilization of discrete fractional order systems, high performance control using soft variable structure control and contraction analysis by integer and fractional order infinitesimal variations.