Fracture Mechanics for Modern Engineering Design


Book Description

Fracture is a natural reaction of solids to relieve stress and shed excess energy. The fragility of solids is a constant threat to our survival as we drive over a bridge, go through a tunnel, or even inside a building. This book weaves together the essential concepts underlying fracture mechanics.




Damage and Fracture Mechanics


Book Description

The First African InterQuadrennial ICF Conference “AIQ-ICF2008” on Damage and Fracture Mechanics – Failure Analysis of Engineering Materials and Structures”, Algiers, Algeria, June 1–5, 2008 is the first in the series of InterQuadrennial Conferences on Fracture to be held in the continent of Africa. During the conference, African researchers have shown that they merit a strong reputation in international circles and continue to make substantial contributions to the field of fracture mechanics. As in most countries, the research effort in Africa is und- taken at the industrial, academic, private sector and governmental levels, and covers the whole spectrum of fracture and fatigue. The AIQ-ICF2008 has brought together researchers and engineers to review and discuss advances in the development of methods and approaches on Damage and Fracture Mechanics. By bringing together the leading international experts in the field, AIQ-ICF promotes technology transfer and provides a forum for industry and researchers of the host nation to present their accomplishments and to develop new ideas at the highest level. International Conferences have an important role to play in the technology transfer process, especially in terms of the relationships to be established between the participants and the informal exchange of ideas that this ICF offers.




Applied Impact Mechanics


Book Description

This book is intended to help the reader understand impact phenomena as a focused application of diverse topics such as rigid body dynamics, structural dynamics, contact and continuum mechanics, shock and vibration, wave propagation and material modelling. It emphasizes the need for a proper assessment of sophisticated experimental/computational tools promoted widely in contemporary design. A unique feature of the book is its presentation of several examples and exercises to aid further understanding of the physics and mathematics of impact process from first principles, in a way that is simple to follow.




Proceedings of the 17th International Conference on New Trends in Fatigue and Fracture


Book Description

This book presents the proceedings of one of the major conferences in fatigue, fracture and structural integrity (NT2F). The papers are organized and divided in five different themes: fatigue and fracture mechanics of structures and advanced materials; fatigue and fracture in pressure vessels and pipelines: mechanical behavior and structural integrity of welded, bonded and bolted joints; residual stress and environmental effects on the fatigue behavior; and simulation methods, analytical and computation models in fatigue and fracture.




Linear Elastic Fracture Mechanics for Engineers: Theory and Applications


Book Description

This book fulfills the need for a short, modern, introductory text on linear elastic fracture mechanics and its engineering applications. Suitable for use by engineering undergraduates, and other newcomers to the subject, it:- • Explains the main ideas underlying present day linear elastic fracture mechanics and how these have been developed. • Shows how the ideas can be used to carry out calculations answering the question 'Does this crack matter?' from the viewpoint of an engineering designer. • Provides an understanding of the basis of standard methods and software employed to carry out calculations. • Includes additional, more advanced material, where this will increase understanding of the sometimes formidable mathematics involved, and of the various simplifications and approximations used in practical applications. The author includes all the material central to an undergraduate introductory course and ends each chapter with an overview of the material covered to aid accessibility. Familiarity with the mechanical properties of metallic materials, and with the linear elastic stress analysis of uncracked bodies is assumed.




Mechanics of Fatigue


Book Description

Mechanics of Fatigue addresses the range of topics concerning damage, fatigue, and fracture of engineering materials and structures. The core of this resource builds upon the synthesis of micro- and macro-mechanics of fracture. In micromechanics, both the modeling of mechanical phenomena on the level of material structure and the continuous approach are based on the use of certain internal field parameters characterizing the dispersed micro-damage. This is referred to as continuum damage mechanics. The author develops his own theory for macromechanics, called analytical fracture mechanics. This term means the system cracked body - loading or loading device - is considered as a mechanical system and the tools of analytical (rational) mechanics are applied thoroughly to describe crack propagation until the final failure. Chapter discuss: preliminary information on fatigue and engineering methods for design of machines and structures against failures caused by fatigue fatigue crack nucleation, including microstructural and continuous models theory of fatigue crack propagation fatigue crack growth in linear elastic materials subject to dispersed damage fatigue cracks in elasto-plastic material, including crack growth retardation due to overloading as well as quasistationary approximation fatigue and related phenomena in hereditary solids application of the theory fatigue crack growth considering environmental factors unidirectional fiber composites with ductile matrix and brittle, initially continuous fibers laminate composites Mechanics of Fatigue serves students dealing with mechanical aspects of fatigue, conducting research in fracture mechanics, structural safety, mechanics of composites, as well as modern branches of mechanics of solids and structures.




Fundamentals of Fracture Mechanics


Book Description




The Life of Cracks


Book Description

Many people find the concept of fracture and damage mechanics to be somewhat problematic, mainly because, until recently, close attention in mechanics was focused especially on the strength and resistance of materials. In this sense, to speak of fracture is as uncomfortable for some as it is to speak of a deadly disease. In confronting and preventing a fatal disease, one must understand its complexity, symptoms, and behavior; by the same token, in securing the strength of an engineering structure, one must understand the reasons and type of its potential failure. This book will provide knowledge and insights on this matter to its readers.




Stochastic Crack Propagation


Book Description

Stochastic Crack Propagation: Essential Practical Aspects describes a feature important to the analysis of stochastic crack propagation, starting with essential background theory. Processes, or phenomena, which are of practical importance in the work of design engineers or R&D teams are described chapter by chapter. Many examples are described and supported by listed references, and files of data that can be used with specialist software to practice design situations are included. Advice on how to use various computer programs to design and predict for stochastic crack growth is also provided, giving professionals a complete guide. - Presents instructions and exercises in the ideal format for professionals, focusing on applications - Explains a methodology on how to optimize the engineering design process by including stochastic crack growth behavior - Provides computational files to help readers get up-to-speed with design using programs like ANSYS and NASTRAN for stochastic crack growth




Application of Fracture Mechanics to Composite Materials


Book Description

This multiauthor volume provides a useful summary of current knowledge on the application of fracture mechanics to composite materials. It has been written to fill the gap between the literature on fundamental principles of fracture mechanics and the special publications on the fracture properties of conventional materials, such as metals, polymers and ceramics.The data are represented in the form of about 420 figures (including diagrams, schematics and photographs) and 80 tables. The author index covers more than 500 references, and the subject index more than 1000 key words.