A Practical Approach to Fracture Mechanics


Book Description

A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and experimental methods for determining the fracture resistance of mechanical and structural components, also demonstrating the use of fracture mechanics in failure analysis, reinforcement of cracked structures, and remaining life estimation. The characteristics of crack propagation induced by fatigue, stress-corrosion, creep, and absorbed hydrogen are also discussed. The book concludes with a chapter on the structural integrity analysis of cracked components alongside a real integrity assessment. This book will be especially useful for students in mechanical, civil, industrial, metallurgical, aeronautical and chemical engineering, and for professional engineers looking for a refresher on core principles. - Concisely outlines the underlying fundamentals of fracture mechanics, making physical concepts clear and simple and providing easily-understood applied examples - Includes solved problems of the most common calculations, along with step-by-step procedures to perform widely-used methods in fracture mechanics - Demonstrates how to determine stress intensity factors and fracture toughness, estimate crack growth rate, calculate failure load, and other methods and techniques










Fracture Toughness Characteristics of the New Weldable Steels of 180- to 210-Ksi Yield Strengths


Book Description

The yield strength range for steels from 180 to 210 ksi is currently covered by four weldable alloys of the following nominal chemical analysis: 18%Ni-8%Co-3%Mo maraging steel, 12%Ni-5%Cr-3%Mo maraging steel, 9%Ni-4%Co-0.20%C quenched and tempered (Q and T) steel, and 10%Ni-8%Co-2%Cr-1%Mo-0.10%C Q and T steel. Broad ranges of fracture resistance have been reported for these materials based on various fracture tests, and this report presents information for material selection and design guidance by providing an analysis of the interactions between the metallurgical and mechanical parameters that contribute to the fracture resistance of plate products. Definitions of the interaction between the metallurgical and the mechanical aspects are developed with the use of the Dynamic Tear (DT) test and the Ratio Analysis Diagram (RAD). (Author).




Fracture Toughness Testing


Book Description

A comprehensive survey is presented of current methods of fracture toughness testing that are based on linear elastic fracture mechanics. General principles are discussed in relation to the basic two-dimensional crack stress field model and in relation to real three-dimensional specimens. The designs and necessary dimensions of specimens for mixed mode and opening mode (plane strain) crack toughness measurement are considered in detail. Methods of test instrumentation and procedure are described. Expressions for the calculation of crack toughness values are given for the common types of specimens.




Current Methods of Fracture-toughness Testing of High-strength Alloys with Emphasis on Plane Strain


Book Description

Fracture-toughness testing using principles of fracture mechanics has developed to the point where it can be used as a basis for selection of materials, for estimating limiting design stresses assuming the presence of small flaws, and for analyzing failures. Current methods of measuring plane-stress and plane-strain fracturetoughness parameters are presented in this report. The specimens include center-cracked, edge-cracked, single-edge-cracked, surface-cracked, and notched round bars, which are subjected to tensile loading, and notched bars for bend tests. The different types of specimens permit evaluating sheet, plate, bar stock, and forgings as well as material from failed structures. Application of fracture-toughness parameters to design of high-strength structures is reviewed for both static and fatigue loading. Consideration of the fracture-mechanics concepts in design should lead to fewer problems with brittle fracture in high-strength structures. (Author).










Rock Fractures in Geological Processes


Book Description

Rock fractures control many of Earth's dynamic processes, including plate-boundary development, tectonic earthquakes, volcanic eruptions, and fluid transport in the crust. An understanding of rock fractures is also essential for effective exploitation of natural resources such as ground water, geothermal water, and petroleum. This book combines results from fracture mechanics, materials science, rock mechanics, structural geology, hydrogeology, and fluid mechanics to explore and explain fracture processes and fluid transport in the crust. Basic concepts are developed from first principles and illustrated with worked examples linking models of geological processes to real field observations and measurements. Many additional examples and exercises are provided online, allowing readers to practise formulating and quantitative testing of models. Rock Fractures in Geological Processes is designed for courses at the advanced undergraduate and graduate level but also forms a vital resource for researchers and industry professionals concerned with fractures and fluid transport in the Earth's crust.




Contact and Fracture Mechanics


Book Description

This book contains two sections: Chapters 1-7 deal with contact mechanics, and Chapters 8-13 deal with fracture mechanics. The different contributions of this book will cover the various advanced topics of research. It provides some needed background with respect to contact mechanics, fracture mechanics and the use of finite element methods in both. All the covered chapters of this book are of a theoretical and applied nature, suitable for the researchers of engineering, physics, applied mathematics and mechanics with an interest in computer simulation of contact and fracture problems.