Current Methods of Fracture-toughness Testing of High-strength Alloys with Emphasis on Plane Strain


Book Description

Fracture-toughness testing using principles of fracture mechanics has developed to the point where it can be used as a basis for selection of materials, for estimating limiting design stresses assuming the presence of small flaws, and for analyzing failures. Current methods of measuring plane-stress and plane-strain fracturetoughness parameters are presented in this report. The specimens include center-cracked, edge-cracked, single-edge-cracked, surface-cracked, and notched round bars, which are subjected to tensile loading, and notched bars for bend tests. The different types of specimens permit evaluating sheet, plate, bar stock, and forgings as well as material from failed structures. Application of fracture-toughness parameters to design of high-strength structures is reviewed for both static and fatigue loading. Consideration of the fracture-mechanics concepts in design should lead to fewer problems with brittle fracture in high-strength structures. (Author).




Fracture Toughness Testing


Book Description

A comprehensive survey is presented of current methods of fracture toughness testing that are based on linear elastic fracture mechanics. General principles are discussed in relation to the basic two-dimensional crack stress field model and in relation to real three-dimensional specimens. The designs and necessary dimensions of specimens for mixed mode and opening mode (plane strain) crack toughness measurement are considered in detail. Methods of test instrumentation and procedure are described. Expressions for the calculation of crack toughness values are given for the common types of specimens.







Rock Fracture Mechanics


Book Description




Fundamentals of Fracture Mechanics


Book Description







Contact and Fracture Mechanics


Book Description

This book contains two sections: Chapters 1-7 deal with contact mechanics, and Chapters 8-13 deal with fracture mechanics. The different contributions of this book will cover the various advanced topics of research. It provides some needed background with respect to contact mechanics, fracture mechanics and the use of finite element methods in both. All the covered chapters of this book are of a theoretical and applied nature, suitable for the researchers of engineering, physics, applied mathematics and mechanics with an interest in computer simulation of contact and fracture problems.