Fragment-Based Drug Discovery


Book Description

Fragment-based drug discovery (FBDD) is a new paradigm in drug discovery that utilizes very small molecules - fragments of larger molecules. It is a faster, cheaper, smarter way to do drug discovery, as shown by the number of pharmaceutical companies that have embraced this approach and the biotechnology companies who use fragments as their sole source of drug discovery. Fragment-Based Drug Discovery: A Practical Approach is a guide to the techniques and practice of using fragments in drug screening. The emphasis is on practical guidance, with procedures, case studies, practical tips, and contributions from industry. Topics covered include: an introduction to fragment based drug discovery, why using fragments is a more efficient process than predominant models, and what it means to have a successful FBDD effort. setting up an FBDD project library building and production NMR in fragment screening and follow up application of protein-ligand NOE matching to the rapid evaluation of fragment binding poses target immobilized NMR screening: validation and extension to membrane proteins in situ fragment-based medicinal chemistry: screening by mass spectrometry computational approaches to fragment and substructure discovery and evaluation virtual fragment scanning: current trends, applications and web based tools fragment-based lead discovery using covalent capture methods case study from industry: the identification of high affinity beta-secretase inhibitors using fragment-based lead generation With contributions from industry experts who have successfully set up an industrial fragment-based research program, Fragment-Based Drug Discovery: A Practical Approach offers essential advice to anyone embarking on drug discovery using fragments and those looking for a new approach to screening for drugs.




Fragment-based Drug Discovery


Book Description

From its origins as a niche technique more than 15 years ago, fragment-based approaches have become a major tool for drug and ligand discovery, often yielding results where other methods have failed. Written by the pioneers in the field, this book provides a comprehensive overview of current methods and applications of fragment-based discovery, as well as an outlook on where the field is headed. The first part discusses basic considerations of when to use fragment-based methods, how to select targets, and how to build libraries in the chemical fragment space. The second part describes established, novel and emerging methods for fragment screening, including empirical as well as computational approaches. Special cases of fragment-based screening, e. g. for complex target systems and for covalent inhibitors are also discussed. The third part presents several case studies from recent and on-going drug discovery projects for a variety of target classes, from kinases and phosphatases to targeting protein-protein interaction and epigenetic targets.




Fragment-Based Drug Discovery


Book Description

Fragment-based drug discovery is a rapidly evolving area of research, which has recently seen new applications in areas such as epigenetics, GPCRs and the identification of novel allosteric binding pockets. The first fragment-derived drug was recently approved for the treatment of melanoma. It is hoped that this approval is just the beginning of the many drugs yet to be discovered using this fascinating technique. This book is written from a Chemist's perspective and comprehensively assesses the impact of fragment-based drug discovery on a wide variety of areas of medicinal chemistry. It will prove to be an invaluable resource for medicinal chemists working in academia and industry, as well as anyone interested in novel drug discovery techniques.




Fragment Based Drug Design


Book Description

There are numerous excellent reviews on fragment-based drug discovery (FBDD), but there are to date no hand-holding guides or protocols with which one can embark on this orthogonal approach to complement traditional high throughput screening methodologies. This Methods in Enzymology volume offers the tools, practical approaches, and hit-to-lead examples on how to conduct FBDD screens. The chapters in this volume cover methods that have proven to be successful in generating leads from fragments, including chapters on how to apply computational techniques, nuclear magnetic resonance, surface plasma resonance, thermal shift and binding assays, protein crystallography, and medicinal chemistry in FBDD. Also elaborated by experienced researchers in FBDD are sample preparations of fragments, proteins, and GPCR as well as examples of how to generate leads from hits. Offers the tools, practical approaches, and hit-to-lead examples on how to conduct FBDD screens The chapters in this volume cover methods that have proven to be successful in generating leads from fragments, including chapters on how to apply computational techniques, nuclear magnetic resonance, surface plasma resonance, thermal shift and binding assays, protein crystallography, and medicinal chemistry in FBDD




Fragment-Based Drug Discovery and X-Ray Crystallography


Book Description

Introduction to Fragment-Based Drug Discovery, by Daniel A. Erlanson Fragment Screening Using X-Ray Crystallography, by Thomas G. Davies and Ian J. Tickle Hsp90 Inhibitors and Drugs from Fragment and Virtual Screening, by Stephen Roughley, Lisa Wright, Paul Brough, Andrew Massey and Roderick E. Hubbard Combining NMR and X-ray Crystallography in Fragment-Based Drug Discovery: Discovery of Highly Potent and Selective BACE-1 Inhibitors, by Daniel F. Wyss, Yu-Sen Wang, Hugh L. Eaton, Corey Strickland, Johannes H. Voigt, Zhaoning Zhu and Andrew W. Stamford Combining Biophysical Screening and X-Ray Crystallography for Fragment-Based Drug Discovery, by Michael Hennig, Armin Ruf and Walter Huber Targeting Protein–Protein Interactions and Fragment-Based Drug Discovery, by Eugene Valkov, Tim Sharpe, May Marsh, Sandra Greive and Marko Hyvönen Fragment Screening and HIV Therapeutics, by Joseph D. Bauman, Disha Patel and Eddy Arnold Fragment-Based Approaches and Computer-Aided Drug Discovery, by Didier Rognan




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins




Drug Design


Book Description

This book provides a complete snapshot of various experimental approaches to structure-based and ligand-based drug design and is illustrated with more than 200 images.




Applied Biophysics for Drug Discovery


Book Description

Applied Biophysics for Drug Discovery is a guide to new techniques and approaches to identifying and characterizing small molecules in early drug discovery. Biophysical methods are reasserting their utility in drug discovery and through a combination of the rise of fragment-based drug discovery and an increased focus on more nuanced characterisation of small molecule binding, these methods are playing an increasing role in discovery campaigns. This text emphasizes practical considerations for selecting and deploying core biophysical method, including but not limited to ITC, SPR, and both ligand-detected and protein-detected NMR. Topics covered include: • Design considerations in biophysical-based lead screening • Thermodynamic characterization of protein-compound interactions • Characterizing targets and screening reagents with HDX-MS • Microscale thermophoresis methods (MST) • Screening with Weak Affinity Chromatography • Methods to assess compound residence time • 1D-NMR methods for hit identification • Protein-based NMR methods for SAR development • Industry case studies integrating multiple biophysical methods This text is ideal for academic investigators and industry scientists planning hit characterization campaigns or designing and optimizing screening strategies.




Lead Generation Approaches in Drug Discovery


Book Description

An integrated overview of modern approaches to lead discovery Lead generation is increasingly seen as a distinct and success-determining phase of the drug discovery process. Over recent years, there have been major advances in the understanding of what constitutes a good lead compound and how to improve the chances of finding such a compound. Written by leading scientists and established opinion leaders from industry and academia, this book provides an authoritative overview of the field, as well as the theory, practice, and scope, of the principal Lead Generation Approaches in Drug Discovery, including: The evolution of the lead discovery process, key concepts, current challenges, and future directions Strategies and technologies driving the high-throughput screening (HTS) approach to lead discovery, including the shifting paradigms in the design of compound collections and best practice in the hit confirmation process Knowledge-based in silico or "virtual" screening Theory and practice of the fragment-based approach to lead discovery The opportunities and challenges presented by multi-target drug discovery (MTDD) De novo design of lead compounds and new approaches to estimating the synthetic accessibility of de novo–designed molecules The impact of natural products on drug discovery, and potential of natural product–like compounds for exploring regions of biologically relevant chemical space Using early screening of hits and leads for metabolic, pharmacokinetic, and toxicological liabilities to reduce attrition during the later phases of drug discovery The utility of parallel synthesis and purification in lead discovery With each topic supported by numerous case studies, this is indispensable reading for researchers in industry and academia who wish to keep up to date with the latest strategies and approaches in drug discovery.




Basic Principles of Drug Discovery and Development


Book Description

Basic Principles of Drug Discovery and Development presents the multifaceted process of identifying a new drug in the modern era, which requires a multidisciplinary team approach with input from medicinal chemists, biologists, pharmacologists, drug metabolism experts, toxicologists, clinicians, and a host of experts from numerous additional fields. Enabling technologies such as high throughput screening, structure-based drug design, molecular modeling, pharmaceutical profiling, and translational medicine are critical to the successful development of marketable therapeutics. Given the wide range of disciplines and techniques that are required for cutting edge drug discovery and development, a scientist must master their own fields as well as have a fundamental understanding of their collaborator's fields. This book bridges the knowledge gaps that invariably lead to communication issues in a new scientist's early career, providing a fundamental understanding of the various techniques and disciplines required for the multifaceted endeavor of drug research and development. It provides students, new industrial scientists, and academics with a basic understanding of the drug discovery and development process. The fully updated text provides an excellent overview of the process and includes chapters on important drug targets by class, in vitro screening methods, medicinal chemistry strategies in drug design, principles of in vivo pharmacokinetics and pharmacodynamics, animal models of disease states, clinical trial basics, and selected business aspects of the drug discovery process. - Provides a clear explanation of how the pharmaceutical industry works, as well as the complete drug discovery and development process, from obtaining a lead, to testing the bioactivity, to producing the drug, and protecting the intellectual property - Includes a new chapter on the discovery and development of biologics (antibodies proteins, antibody/receptor complexes, antibody drug conjugates), a growing and important area of the pharmaceutical industry landscape - Features a new section on formulations, including a discussion of IV formulations suitable for human clinical trials, as well as the application of nanotechnology and the use of transdermal patch technology for drug delivery - Updated chapter with new case studies includes additional modern examples of drug discovery through high through-put screening, fragment-based drug design, and computational chemistry