Free Algebras and PI-algebras


Book Description

The book is devoted to the combinatorial theory of polynomial algebras, free associative and free Lie algebras, and algebras with polynomial identities. It also examines the structure of automorphism groups of free and relatively free algebras. It is based on graduate courses and short cycles of lectures presented by the author at several universities and its goal is to involve the reader as soon as possible in the research area, to make him or her able to read books and papers on the considered topics. It contains both classical and contemporary results and methods. A specific feature of the book is that it includes as its inseparable part more than 250 exercises and examples with detailed hints (50 % of the numbered statements), some of them treating serious mathematical results. The exposition is accessible for graduate and advanced undergraduate students with standard background on linear algebra and some elements of ring theory and group theory. The professional mathematician working in the field of algebra and other related topics also will find the book useful for his or her research and teaching. TOC:Introduction 1. Commutative, Associative and Lie Algebras: Basic properties of algebras; Free algebras; The Poincaré-Birkhoff-Witt theorem. 2. Algebras with Polynomial Identities: Definitions and examples of PI-Algebras; Varieties and relatively free algebras; The theorem of Birkhoff. 3. The Specht Problem: The finite basis property; Lie algebras in characteristic 2. 4. Numerical Invariants of T-Ideals: Graded vector spaces; Homogeneous and multilinear polynomial identities; Proper polynomial identities. 5. Polynomial Identities of Concrete Algebras: Polynomial identities of the Grassmann algebra; Polynomial identities of the upper triangular matrices. 6. Methods of Commutative Algebra: Rational Hilbert series; Nonmatrix polynomial identities; Commutative and noncommutative invariant theory. 7. Polynomial Identities of the Matrix Algebras: The Amitsur-Levitzki theorem; Generic matrices; Central polynomials; Various identities of matrices. 8. Multilinear Polynomial Identities: The codimension theorem of Regev; Algebras with polynomial growth of codimensions; The Nagata-Higman theorem; The theory of Kemer. 9. Finitely Generated PI-Algebras: The problems of Burnside and Kurosch; The Shirshov theorem; Growth of algebras and Gelfand-Kirillov dimension; Gelfand-Kirillov dimension of PI-Algebras. 10. Automorphisms of Free Algebras: Automorphisms of groups and algebras; The polynomial algebra in two variables; The free associative algebra of rank two; Exponential automorphisms; Automorphisms of relatively free algebras. 11. Free Lie Algebras and Their Automorphisms: Bases and subalgebras of free Lie algebras; Automorphisms of free Lie algebras; Automorphisms of relatively free Lie algebras. 12. The Method of Representation Theory: Representations of finite groups; The symmetric group; Multilinear polynomial identities; The action of the general linear group; Proper polynomial identities; Polynomial identities of matrices.




PI-Algebras


Book Description




The Concise Handbook of Algebra


Book Description

It is by no means clear what comprises the "heart" or "core" of algebra, the part of algebra which every algebraist should know. Hence we feel that a book on "our heart" might be useful. We have tried to catch this heart in a collection of about 150 short sections, written by leading algebraists in these areas. These sections are organized in 9 chapters A, B, . . . , I. Of course, the selection is partly based on personal preferences, and we ask you for your understanding if some selections do not meet your taste (for unknown reasons, we only had problems in the chapter "Groups" to get enough articles in time). We hope that this book sets up a standard of what all algebraists are supposed to know in "their" chapters; interested people from other areas should be able to get a quick idea about the area. So the target group consists of anyone interested in algebra, from graduate students to established researchers, including those who want to obtain a quick overview or a better understanding of our selected topics. The prerequisites are something like the contents of standard textbooks on higher algebra. This book should also enable the reader to read the "big" Handbook (Hazewinkel 1999-) and other handbooks. In case of multiple authors, the authors are listed alphabetically; so their order has nothing to do with the amounts of their contributions.




Polynomial Identities in Algebras


Book Description

This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.




Ideals of Identities of Associative Algebras


Book Description

This book concerns the study of the structure of identities of PI-algebras over a field of characteristic zero. In the first chapter, the author brings out the connection between varieties of algebras and finitely-generated superalgebras. The second chapter examines graded identities of finitely-generated PI-superalgebras. One of the results proved concerns the decomposition of T-ideals, which is very useful for the study of specific varieties. In the fifth section of Chapter Two, the author solves Specht's problem, which asks whether every associative algebra over a field of characteristic zero has a finite basis of identities. The book closes with an application of methods and results established earlier: the author finds asymptotic bases of identities of algebras with unity satisfying all of the identities of the full algebra of matrices of order two.







Computational Aspects of Polynomial Identities


Book Description

Computational Aspects of Polynomial Identities: Volume l, Kemer's Theorems, 2nd Edition presents the underlying ideas in recent polynomial identity (PI)-theory and demonstrates the validity of the proofs of PI-theorems. This edition gives all the details involved in Kemer's proof of Specht's conjecture for affine PI-algebras in characteristic 0.The




Selected Works of A.I. Shirshov


Book Description

Anatolii Illarionovich Shirshov (1921–1981) was an outstanding Russian mat- maticianwhoseworksessentiallyin?uenced thetheoriesofassociative,Lie,Jordan and alternative rings. Many Shirshov’s students and students of his students had a successful research career in mathematics. AnatoliiShirshovwasbornonthe8thofAugustof1921inthevillageKolyvan near Novosibirsk. Before the II World War he started to study mathematics at Tomsk university but then went to the front to ?ght as a volunteer. In 1946 he continued his study at Voroshilovgrad (now Lugansk) Pedagogical Institute and at the same time taught mathematics at a secondary school. In 1950 Shirshov was accepted as a graduate student at the Moscow State University under the supervision of A. G. Kurosh. In 1953 he has successfully defended his Candidate of Science thesis (analog of a Ph. D. ) “Some problems in the theory of nonassociative rings and algebras” and joined the Department of Higher Algebra at the Moscow State University. In 1958 Shirshov was awarded the Doctor of Science degree for the thesis “On some classes of rings that are nearly associative”. In 1960 Shirshov moved to Novosibirsk (at the invitations of S. L. Sobolev and A. I. Malcev) to become one of the founders of the new mathematical institute of the Academy of Sciences (now Sobolev Institute of Mathematics) and to help the formation of the new Novosibirsk State University. From 1960 to 1973 he was a deputy director of the Institute and till his last days he led the research in the theory of algebras at the Institute.




Non-Associative Algebra and Its Applications


Book Description

With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences.




A Taste of Jordan Algebras


Book Description

This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.