Free-Electron Lasers in the Ultraviolet and X-Ray Regime


Book Description

The main goal of the book is to provide a systematic and didactic approach to the physics and technology of free-electron lasers. Numerous figures are used for illustrating the underlying ideas and concepts and links to other fields of physics are provided. After an introduction to undulator radiation and the low-gain FEL, the one-dimensional theory of the high-gain FEL is developed in a systematic way. Particular emphasis is put on explaining and justifying the various assumptions and approximations that are needed to obtain the differential and integral equations governing the FEL dynamics. Analytical and numerical solutions are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. One of the most important features of a high-gain FEL, the formation of microbunches, is studied at length. The increase of gain length due to beam energy spread, space charge forces, and three-dimensional effects such as betatron oscillations and optical diffraction is analyzed. The mechanism of Self-Amplified Spontaneous Emission is described theoretically and illustrated with numerous experimental results. Various methods of FEL seeding by coherent external radiation are introduced, together with experimental results. The world’s first soft X-ray FEL, the user facility FLASH at DESY, is described in some detail to give an impression of the complexity of such an accelerator-based light source. The last chapter is devoted to the new hard X-ray FELs which generate extremely intense radiation in the Angstrøm regime. The appendices contain supplementary material and more involved calculations.




Ultraviolet and Soft X-Ray Free-Electron Lasers


Book Description

The high scienti?c interest in coherent X-ray light sources has stimulated world-wide e?orts in developing X-ray lasers. In this book a particularly promising approach is described, the free-electron laser (FEL), which is p- sued worldwide and holds the promise to deliver ultra-bright X-ray pulses of femtosecond duration. Other types of X-ray lasers are not discussed nor do we try a comparison of the relative virtues and drawbacks of di?erent concepts. The book has an introductory character and is written in the style of a universitytextbookforthemanynewcomerstothe?eldoffree-electronlasers, graduate students as well as accelerator physicists, engineers and technicians; it is not intended to be a scienti?c monograph for the experts in the ?eld. Building on lectures by one of us (J. R.) at the CERN Accelerator School, and motivated by the positive response to a series of seminars on “FEL t- ory for pedestrians”, given by P. S. within the framework of the Academic Training Program at DESY, we have aimed at presenting the theory of the low-gainandthehigh-gainFELinaclearandconcisemathematicallanguage. Particular emphasis is put on explaining and justifying the assumptions and approximations that are needed to obtain the di?erential equations descr- ing the FEL dynamics. Although we have tried our best to be “simple”, the mathematical derivations are certainly not always as simple as one would like them to be. However, we are not aware of any easier approach to the FEL theory. Some of the more involved calculations are put into the appendices.




Principles of Free Electron Lasers


Book Description

This book presents a comprehensive description of the physics of free-electron lasers starting from the fundamentals and proceeding through detailed derivations of the equations describing electron trajectories, and spontaneous and stimulated emission. Linear and nonlinear analyses are described, as are detailed explanations of the nonlinear simulation of a variety of configurations including amplifiers, oscillators, self-amplified spontaneous emission, high-gain harmonic generation, and optical klystrons. Theory and simulation are anchored using comprehensive comparisons with a wide variety of experiments.




X-Ray Free-Electron Laser


Book Description

This book is a printed edition of the Special Issue "X-Ray Free-Electron Laser" that was published in Applied Sciences




Free Electron Lasers


Book Description

Free Electron Lasers consists of 10 chapters, which refer to fundamentals and design of various free electron laser systems, from the infrared to the xuv wavelength regimes. In addition to making a comparison with conventional lasers, a couple of special topics concerning near-field and cavity electrodynamics, compact and table-top arrangements and strong radiation induced exotic states of matter are analyzed as well. The control and diagnostics of such devices and radiation safety issues are also discussed. Free Electron Lasers provides a selection of research results on these special sources of radiation, concerning basic principles, applications and some interesting new ideas of current interest.







Synchrotron Radiation and Free-Electron Lasers


Book Description

Preliminary concepts -- Synchrotron radiation -- Basic FEL physics -- 1D FEL analysis -- 3D FEL analysis -- Harmonic generation in high-gain FELs -- FEL oscillators and coherent hard X-rays -- Practical considerations and experimental results for high-gain FELs




A Free-electron Laser Fourth-generation X-ray Source


Book Description

The field of synchrotrons radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research those beams make possible. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the.optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission in free electron lasers. The use of a superconducting linac could produce a major, cost-effective facility that spans wavelengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotron facilities, immense new scientific opportunities from fourth-generation sources.







Principles of Free-electron Lasers


Book Description

This book is the definitive tutorial text and reference work on free electron lasers. Since the publication of the first edition in 1992 there has been a significant increase both in the number of free-electron lasers in use worldwide, and in the understanding of the various regimes for these devices. In order to maintain the position of this book as the most comprehensive and thorough reference and tutorial in the field, the authors have completely updated the book. In addition to updates and corrections to chapters in the first edition, new chapters have been added.