Freedom in Machinery: Volume 2, Screw Theory Exemplified


Book Description

Does a machine run well by virtue of its accuracies, or its freedoms? This work presents an exciting, diagrammatic display of the hidden geometry of freedom and constraint. It bolsters the imaginative design of robots, but applies across all fields of machinery. The figures and their captions comprise alone a self-standing story, and this connects effectively with the rigorously argued text. The seamless combination of the two volumes (1984, 1990) renders the internal cross-referencing (forward and backward within the volumes) easier to look up. The appearance of this paperback is a clear testament to the work's ongoing readership. The term screw theory occurs throughout. This relates (after Ball) to the book's philosophy; and one might equally mention kinetostatics (after Federhofer). An all-pervading, counter-intuitive fact accordingly presents itself: while, analogously, angular velocity relates to force, linear velocity relates to couple. A direct consequence of Freedom in Machinery is a more recent book by the same author. Specifically titled General Spatial Involute Gearing and published in Germany (2003), it exemplifies the many ways in which Freedom in Machinery clarifies the enigmatic field of spatial mechanism. That field continuously expands with the current, continuous thrust of ordinary engineering practice.




Freedom in Machinery: Introducing screw theory


Book Description

This book deals with questions of freedom and constraint in machinery. It asks, for example, whether the smooth working of a machine will depend entirely upon the accuracy of its construction. As it answers such questions, it explores the geometrical interstices of the so-called screw systems at the.




Theory of Parallel Mechanisms


Book Description

This book contains mechanism analysis and synthesis. In mechanism analysis, a mobility methodology is first systematically presented. This methodology, based on the author's screw theory, proposed in 1997, of which the generality and validity was only proved recently, is a very complex issue, researched by various scientists over the last 150 years. The principle of kinematic influence coefficient and its latest developments are described. This principle is suitable for kinematic analysis of various 6-DOF and lower-mobility parallel manipulators. The singularities are classified by a new point of view, and progress in position-singularity and orientation-singularity is stated. In addition, the concept of over-determinate input is proposed and a new method of force analysis based on screw theory is presented. In mechanism synthesis, the synthesis for spatial parallel mechanisms is discussed, and the synthesis method of difficult 4-DOF and 5-DOF symmetric mechanisms, which was first put forward by the author in 2002, is introduced in detail. Besides, the three-order screw system and its space distribution of the kinematic screws for infinite possible motions of lower mobility mechanisms are both analyzed.




Proceedings of the 5th IEEE/IFToMM International Conference on Reconfigurable Mechanisms and Robots


Book Description

The 5th IEEE/IFToMM International Conference on Re-configurable Mechanisms and Robots (ReMAR 2021) was held in Toronto, Canada on August 12-14, 2021 at Ryerson University. The conference proceedings include more than 70 papers on three main subjects, 1) Reconfigurable Mechanisms and Robotics, 2) Variable Topology and Morphing Mechanism, and 3)Origami and Bio-inspired mechanisms.




Mechanisms


Book Description

Theory of mechanisms is an applied science of mechanics that studies the relationship between geometry, mobility, topology, and relative motion between rigid bodies connected by geometric forms. Recently, knowledge in kinematics and mechanisms has considerably increased, causing a renovation in the methods of kinematic analysis. With the progress of the algebras of kinematics and the mathematical methods used in the optimal solution of polynomial equations, it has become possible to formulate and elegantly solve problems. Mechanisms: Kinematic Analysis and Applications in Robotics provides an updated approach to kinematic analysis methods and a review of the mobility criteria most used in planar and spatial mechanisms. Applications in the kinematic analysis of robot manipulators complement the material presented in the book, growing in importance when one recognizes that kinematics is a basic area in the control and modeling of robot manipulators. - Presents an organized review of general mathematical methods and classical concepts of the theory of mechanisms - Introduces methods approaching time derivatives of arbitrary vectors employing general approaches based on the vector angular velocity concept introduced by Kane and Levinson - Proposes a strategic approach not only in acceleration analysis but also to jerk analysis in an easy to understand and systematic way - Explains kinematic analysis of serial and parallel manipulators by means of the theory of screws




Geometric Fundamentals of Robotics


Book Description

* Provides an elegant introduction to the geometric concepts that are important to applications in robotics * Includes significant state-of-the art material that reflects important advances, connecting robotics back to mathematical fundamentals in group theory and geometry * An invaluable reference that serves a wide audience of grad students and researchers in mechanical engineering, computer science, and applied mathematics




Fundamentals of Robotic Mechanical Systems


Book Description

The 4th edition includes updated and additional examples and exercises on the core fundamental concepts of mechanics, robots, and kinematics of serial robots. New images of CAD models and physical robots help to motivate concepts being introduced. Each chapter of the book can be read independently of others as it addresses a seperate issue in robotics.




New Approaches to Gear Design and Production


Book Description

This is the third book in a series devoted to gear design and production. Comprising papers by scientists and gear experts from around the globe, it covers recent developments in practically all spheres of mechanical engineering related to gears and transmissions. It describes advanced approaches to research, design, testing and production of various kinds of gears for a vast range of applications, with a particular focuses on advanced computer-aided approaches for gear analysis, simulation and design, the application of new materials and tribological issues.




Kinematics and Dynamics of Multi-Body Systems


Book Description

Three main disciplines in the area of multibody systems are covered: kinematics, dynamics, and control, as pertaining to systems that can be modelled as coupling or rigid bodies. The treatment is intended to give a state of the art of the topics discussed.




Explorations in the History of Machines and Mechanisms


Book Description

This book contains the proceedings of HMM2012, the 4th International Symposium on Historical Developments in the field of Mechanism and Machine Science (MMS). These proceedings cover recent research concerning all aspects of the development of MMS from antiquity until the present and its historiography: machines, mechanisms, kinematics, dynamics, concepts and theories, design methods, collections of methods, collections of models, institutions and biographies.