Frequency Standards and Metrology - Proceedings of the 7Th Symposium


Book Description

The Symposium on Frequency Standards and Metrology is an event held approximately every seven years, and is regarded as the premier conference in the field of advanced clocks and oscillators together with their applications in science and metrology. This series began with the first meeting at Universit(r) Laval, Quebec Canada in 1971, and the last one was held in 2001 at the University of St. Andrews, Scotland. The 7th Symposium on Frequency Standards and Metrology is scheduled for October 5OCo11, 2008 at the Asilomar Conference Grounds in Pacific Grove, California, USA. The Symposium is intended as a forum for bringing together international scientists and technologists engaged in the development of precise frequency standards and clocks, the study of their underlying physics, and their applications in metrology and tests of fundamental laws. The symposium has been traditionally held in a venue that promotes exchange of information on emerging ideas and latest achievements in the field, with a single-session approach which includes oral presentations by invitation, poster session(s) and keynote talks from internationally-recognized speakers. The program also includes social and other events aimed at promoting the exchange of technical and scientific information."




Frequency Standards and Metrology


Book Description

The Symposium on Frequency Standards and Metrology is an event held approximately every seven years, and is regarded as the premier conference in the field of advanced clocks and oscillators together with their applications in science and metrology. This series began with the first meeting at Universiteacute; Laval, Quebec Canada in 1971, and the last one was held in 2001 at the University of St. Andrews, Scotland. The 7th Symposium on Frequency Standards and Metrology is scheduled for October 5ndash;11, 2008 at the Asilomar Conference Grounds in Pacific Grove, California, USA. The Symposium is intended as a forum for bringing together international scientists and technologists engaged in the development of precise frequency standards and clocks, the study of their underlying physics, and their applications in metrology and tests of fundamental laws. The symposium has been traditionally held in a venue that promotes exchange of information on emerging ideas and latest achievements in the field, with a single-session approach which includes oral presentations by invitation, poster session(s) and keynote talks from internationally-recognized speakers. The program also includes social and other events aimed at promoting the exchange of technical and scientific information.




The Quantum Physics of Atomic Frequency Standards


Book Description

This volume covers advances in atomic frequency standards (atomic clocks) from the last several decades. It explains the use of techniques, such as laser optical pumping, coherent population trapping, laser cooling, and electromagnetic and optical trapping, in the implementation of classical microwave and optical atomic frequency standards. The authors describe the basic physics behind the operation of atomic clocks, explore new frequency standards that provide better stability and accuracy than conventional standards, and illustrate the application of atomic clocks in various areas.




Frequency Standards and Metrology


Book Description

This book discusses the latest research ideas with application to frequency standards (e.g. optical clocks) and assesses ideas from previous symposia which have undergone critical analysis.




Frequency Standards And Metrology, Procs Of The 6th Symposium


Book Description

This book discusses the latest research ideas with application to frequency standards (e.g. optical clocks) and assesses ideas from previous symposia which have undergone critical analysis.




Annual Review of Cold Atoms and Molecules


Book Description

The aim of this book is to present review articles describing the latest theoretical and experimental developments in the field of cold atoms and molecules. Our hope is that this series will promote research by both highlighting recent breakthroughs and by outlining some of the most promising research directions in the field.




The New International System of Units (SI)


Book Description

The International System of Units, the SI, provides the foundation for all measurements in science, engineering, economics, and society. The SI has been fundamentally revised in 2019. The new SI is a universal and highly stable unit system based on invariable constants of nature. Its implementation rests on quantum metrology and quantum standards, which base measurements on the manipulation and counting of single quantum objects, such as electrons, photons, ions, and flux quanta. This book explains and illustrates the new SI, its impact on measurements, and the quantum metrology and quantum technology behind it. The book is based on the book ?Quantum Metrology: Foundation of Units and Measurements? by the same authors. From the contents: -Measurement -The SI (Système International d?Unités) -Realization of the SI Second: Thermal Beam Cs Clock, Laser Cooling, and the Cs Fountain Clock -Flux Quanta, Josephson Effect, and the SI Volt -Quantum Hall Effect, the SI Ohm, and the SI Farad -Single-Charge Transfer Devices and the SI Ampere -The SI Kilogram, the Mole, and the Planck constant -The SI Kelvin and the Boltzmann Constant -Beyond the present SI: Optical Clocks and Quantum Radiometry -Outlook




Nonlinear Optical Cavity Dynamics


Book Description

By recirculating light in a nonlinear propagation medium, the nonlinear optical cavity allows for countless options of light transformation and manipulation. In passive media, optical bistability and frequency conversion are central figures. In active media, laser light can be generated with versatile underlying dynamics. Emphasizing on ultrafast dynamics, the vital arena for the information technology, the soliton is a common conceptual keyword, thriving into its modern developments with the closely related denominations of dissipative solitons and cavity solitons. Recent technological breakthroughs in optical cavities, from micro-resonators to ultra-long fiber cavities, have entitled the exploration of nonlinear optical dynamics over unprecedented spatial and temporal orders of magnitude. By gathering key contributions by renowned experts, this book aims at bridging the gap between recent research topics with a view to foster cross-fertilization between research areas and stimulating creative optical engineering design.




Handbook of Metrology


Book Description

Metrology is the study of measurement. It includes all theoretical and practical aspects of measurement and may be divided into three subfields: Scientific or fundamental metrology concerns the establishment of measurement units, unit systems, development of new measurement methods, realization of measurement standards and the transfer of traceability from these standards to users in society. This handbook contains articles dealing with general topics of measurement and articles on particular subjects in mechanics and acoustics, electricity, optics, temperature, time and frequency, chemistry, medicine and particles. The contributions of the first part are sumamrized as follows. Introduction Units Fundamental Constants Fundamentals of Materials Measurement and Testing Measurement of Mass Desnity Measurement and Instrumentation of Flow Ultrasonics Measurement of Basic Electromagnetic Quantities Quantum Electrical Standards Metrology of Time and Frequency Temperature Measurement Metrology in Medicine




On the Direct Detection of 229m Th


Book Description

This thesis describes the first detection of a nuclear transition that had been sought for 40 years, and marks the essential first step toward developing nuclear clocks. Atomic clocks are currently the most reliable timekeepers. Still, they could potentially be outperformed by nuclear clocks, based on a nuclear transition instead of the atomic transitions employed to date. An elusive, extraordinary state in thorium-229 seems to be the only nuclear transition suitable for this purpose and feasible using currently available technology. Despite repeated efforts over the past 40 years, until recently we had not yet successfully detected the decay of this elusive state. Addressing this gap, the thesis lays the foundation for the development of a new, better frequency standard, which will likely have numerous applications in satellite navigation and rapid data transfer. Further, it makes it possible to improve the constraints for time variations of fundamental constants and opens up the field of nuclear coherent control.