Friction and Wear of Ceramics


Book Description

This book covers the area of tribology broadly, providing important introductory chapters to fundamentals, processing, and applications of tribology. The book is designed primarily for easy and cohesive understanding for students and practicing scientists pursuing the area of tribology with focus on materials. This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. The description of the wear micromechanisms of various materials will provide a strong background to the readers as how to design and develop new tribological materials. This book also places importance on the development of new ceramic composites in the context of tribological applications. Some of the key features of the book include: Fundamentals section highlights the salient issues of ceramic processing and mechanical properties of important oxide and non-oxide ceramic systems; State of the art research findings on important ceramic composites are included and an understanding on the behavior of silicon carbide (SiC) based ceramic composites in dry sliding wear conditions is presented as a case study; Erosion wear behavior of ceramics, in which case studies on high temperature erosion behavior of SiC based composites and zirconium diboride (ZrB2) based composites is also covered; Wear behavior of ceramic coatings is rarely discussed in any tribology related books therefore a case study explaining the abrasion wear behavior of WC-Co coating is provided. Finally an appendix chapter is included in which a collection of several types of questions including multiple choice, short answer and long answer are provided.




Friction and Wear of Ceramics


Book Description

Provides comprehensive information on the tribological aspects of advanced ceramic materials for all uses that require controlled friction and wear resistance. The text is a guide to altering the microstructure of ceramics to create optimum performance in sliding and rolling contact applications.




Tribology of Ceramics and Composites


Book Description

This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.




Friction and Wear of Ceramics


Book Description

This book covers the area of tribology broadly, providing important introductory chapters to fundamentals, processing, and applications of tribology. The book is designed primarily for easy and cohesive understanding for students and practicing scientists pursuing the area of tribology with focus on materials. This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. The description of the wear micromechanisms of various materials will provide a strong background to the readers as how to design and develop new tribological materials. This book also places importance on the development of new ceramic composites in the context of tribological applications. Some of the key features of the book include: Fundamentals section highlights the salient issues of ceramic processing and mechanical properties of important oxide and non-oxide ceramic systems; State of the art research findings on important ceramic composites are included and an understanding on the behavior of silicon carbide (SiC) based ceramic composites in dry sliding wear conditions is presented as a case study; Erosion wear behavior of ceramics, in which case studies on high temperature erosion behavior of SiC based composites and zirconium diboride (ZrB2) based composites is also covered; Wear behavior of ceramic coatings is rarely discussed in any tribology related books therefore a case study explaining the abrasion wear behavior of WC-Co coating is provided. Finally an appendix chapter is included in which a collection of several types of questions including multiple choice, short answer and long answer are provided.




Tribology: Friction and Wear of Engineering Materials


Book Description

Tribology covers the fundamentals of tribology and the tribological response of all types of materials, including metals, ceramics, and polymers. The book provides a solid scientific foundation without relying on extensive mathematics, an approach that will allow readers to formulate appropriate solutions when faced with practical problems. Topics considered include fundamentals of surface topography and contact, friction, lubrication, and wear. The book also presents up-to-date discussions on the treatment of wear in the design process, tribological applications of surface engineering, and materials for sliding and rolling bearings. Tribology will be valuable to engineers in the field of tribology, mechanical engineers, physicists, chemists, materials scientists, and students. Features Provides an excellent general introduction to the friction, wear, and lubrication of materials Presents a balanced comparison of the tribological behavior of metals, ceramics, and polymers Includes discussions on tribological applications of surface engineering and materials for sliding and rolling bearings Emphasizes the scientific foundation of tribology Discusses the treatment of wear in the design process Uses SI units throughout and refers to U.S., U.K., and other European standards and material designations




Tribology Issues and Opportunities in MEMS


Book Description

Micro Electro Mechanical Systems (MEMS) is already about a billion dollars a year industry and is growing rapidly. So far major emphasis has been placed on the fabrication processes for various devices. There are serious issues related to tribology, mechanics, surfacechemistry and materials science in the operationand manufacturingof many MEMS devices and these issues are preventing an even faster commercialization. Very little is understood about tribology and mechanical properties on micro- to nanoscales of the materials used in the construction of MEMS devices. The MEMS community needs to be exposed to the state-of-the-artoftribology and vice versa. Fundamental understanding of friction/stiction, wear and the role of surface contamination and environmental debris in micro devices is required. There are significantadhesion, friction and wear issues in manufacturing and actual use, facing the MEMS industry. Very little is understood about the tribology of bulk silicon and polysilicon films used in the construction ofthese microdevices. These issues are based on surface phenomenaand cannotbe scaled down linearly and these become increasingly important with the small size of the devices. Continuum theory breaks down in the analyses, e. g. in fluid flow of micro-scale devices. Mechanical properties ofpolysilicon and other films are not well characterized. Roughness optimization can help in tribological improvements. Monolayers of lubricants and other materials need to be developed for ultra-low friction and near zero wear. Hard coatings and ion implantation techniques hold promise.




Friction, Wear and Wear Protection


Book Description

The proceedings collect invited and contributed papers from more than 150 scientists and engineers worldwide which provide an up-to-date overview of the current research on friction and wear, including new systematic approaches as well as innovative technical solutions.




Friction and Wear of Ceramics


Book Description

Provides comprehensive information on the tribological aspects of advanced ceramic materials for all uses that require controlled friction and wear resistance. The text is a guide to altering the microstructure of ceramics to create optimum performance in sliding and rolling contact applications.




Friction, Wear, Lubrication


Book Description

The second edition of a bestseller, this book introduces tribology in a way that builds students’ knowledge and understanding. It includes expanded information on topics such as surface characterization as well as recent advances in the field. The book provides additional descriptions of common testing methods, including diagrams and surface texturing for enhanced lubrication, and more information on rolling element bearings. It also explores surface profile characterization and elastic plastic contact mechanics including wavy surface contact, rough surface contact models, friction and wear plowing models, and thermodynamic analysis of friction.




Wear


Book Description

Tribology is emerging from the realm of steam engines and crank-case lubricants and becoming key to vital new technologies such as nanotechnology and MEMS. Wear is an integral part of tribology, and an effective understanding and appreciation of wear is essential in order to achieve the reliable and efficient operation of almost any machine or device. Knowledge in the field has increased considerably over recent years, and continues to expand: this book is intended to stimulate its readers to contribute towards the progress of this fascinating subject that relates to most of the known disciplines in physical science. Wear – Materials, Mechanisms and Practice provides the reader with a unique insight into our current understanding of wear, based on the contributions of numerous internationally acclaimed specialists in the field. Offers a comprehensive review of current knowledge in the field of wear. Discusses latest topics in wear mechanism classification. Includes coverage of a wide variety of materials such as metals, polymers, polymer composites, diamonds, and diamond-like films and ceramics. Discusses the chemo-mechanical linkages that control tribology, providing a more complete treatment of the subject than just the conventional mechanical treatments. Illustrated throughout with carefully compiled diagrams that provide a unique insight into the controlling mechanisms of tribology. The state of the art research on wear and the mechanisms of wear featured will be of interest to post-graduate students and lecturers in engineering, materials science and chemistry. The practical applications discussed will appeal to practitioners across virtually all sectors of engineering and industry including electronic, mechanical and electrical, quality and reliability and design.