From Action Systems to Distributed Systems


Book Description

Formal methods traditionally address the question of transforming software engineering into a mature engineering discipline. This essentially refers to trusting that the software-intensive systems that form our society's infrastructures are behaving according to their specifications. More recently, formal methods are also used to understand propert




From Action Systems to Distributed Systems


Book Description

This book addresses the impact of the "Action Systems" formal method in Computer Science research. Formal Methods in general address the question of transforming software engineering into a mature engineering discipline.




Understanding Distributed Systems, Second Edition


Book Description

Learning to build distributed systems is hard, especially if they are large scale. It's not that there is a lack of information out there. You can find academic papers, engineering blogs, and even books on the subject. The problem is that the available information is spread out all over the place, and if you were to put it on a spectrum from theory to practice, you would find a lot of material at the two ends but not much in the middle. That is why I decided to write a book that brings together the core theoretical and practical concepts of distributed systems so that you don't have to spend hours connecting the dots. This book will guide you through the fundamentals of large-scale distributed systems, with just enough details and external references to dive deeper. This is the guide I wished existed when I first started out, based on my experience building large distributed systems that scale to millions of requests per second and billions of devices. If you are a developer working on the backend of web or mobile applications (or would like to be!), this book is for you. When building distributed applications, you need to be familiar with the network stack, data consistency models, scalability and reliability patterns, observability best practices, and much more. Although you can build applications without knowing much of that, you will end up spending hours debugging and re-architecting them, learning hard lessons that you could have acquired in a much faster and less painful way. However, if you have several years of experience designing and building highly available and fault-tolerant applications that scale to millions of users, this book might not be for you. As an expert, you are likely looking for depth rather than breadth, and this book focuses more on the latter since it would be impossible to cover the field otherwise. The second edition is a complete rewrite of the previous edition. Every page of the first edition has been reviewed and where appropriate reworked, with new topics covered for the first time.




Designing Distributed Systems


Book Description

Without established design patterns to guide them, developers have had to build distributed systems from scratch, and most of these systems are very unique indeed. Today, the increasing use of containers has paved the way for core distributed system patterns and reusable containerized components. This practical guide presents a collection of repeatable, generic patterns to help make the development of reliable distributed systems far more approachable and efficient. Author Brendan Burns—Director of Engineering at Microsoft Azure—demonstrates how you can adapt existing software design patterns for designing and building reliable distributed applications. Systems engineers and application developers will learn how these long-established patterns provide a common language and framework for dramatically increasing the quality of your system. Understand how patterns and reusable components enable the rapid development of reliable distributed systems Use the side-car, adapter, and ambassador patterns to split your application into a group of containers on a single machine Explore loosely coupled multi-node distributed patterns for replication, scaling, and communication between the components Learn distributed system patterns for large-scale batch data processing covering work-queues, event-based processing, and coordinated workflows




Introduction to Reliable and Secure Distributed Programming


Book Description

In modern computing a program is usually distributed among several processes. The fundamental challenge when developing reliable and secure distributed programs is to support the cooperation of processes required to execute a common task, even when some of these processes fail. Failures may range from crashes to adversarial attacks by malicious processes. Cachin, Guerraoui, and Rodrigues present an introductory description of fundamental distributed programming abstractions together with algorithms to implement them in distributed systems, where processes are subject to crashes and malicious attacks. The authors follow an incremental approach by first introducing basic abstractions in simple distributed environments, before moving to more sophisticated abstractions and more challenging environments. Each core chapter is devoted to one topic, covering reliable broadcast, shared memory, consensus, and extensions of consensus. For every topic, many exercises and their solutions enhance the understanding This book represents the second edition of "Introduction to Reliable Distributed Programming". Its scope has been extended to include security against malicious actions by non-cooperating processes. This important domain has become widely known under the name "Byzantine fault-tolerance".




Blockchain for Distributed Systems Security


Book Description

AN ESSENTIAL GUIDE TO USING BLOCKCHAIN TO PROVIDE FLEXIBILITY, COST-SAVINGS, AND SECURITY TO DATA MANAGEMENT, DATA ANALYSIS, AND INFORMATION SHARING Blockchain for Distributed Systems Security contains a description of the properties that underpin the formal foundations of Blockchain technologies and explores the practical issues for deployment in cloud and Internet of Things (IoT) platforms. The authors—noted experts in the field—present security and privacy issues that must be addressed for Blockchain technologies to be adopted for civilian and military domains. The book covers a range of topics including data provenance in cloud storage, secure IoT models, auditing architecture, and empirical validation of permissioned Blockchain platforms. The book's security and privacy analysis helps with an understanding of the basics of Blockchain and it explores the quantifying impact of the new attack surfaces introduced by Blockchain technologies and platforms. In addition, the book contains relevant and current updates on the topic. This important resource: Provides an overview of Blockchain-based secure data management and storage for cloud and IoT Covers cutting-edge research findings on topics including invariant-based supply chain protection, information sharing framework, and trust worthy information federation Addresses security and privacy concerns in Blockchain in key areas, such as preventing digital currency miners from launching attacks against mining pools, empirical analysis of the attack surface of Blockchain, and more Written for researchers and experts in computer science and engineering, Blockchain for Distributed Systems Security contains the most recent information and academic research to provide an understanding of the application of Blockchain technology.




Systems Programming


Book Description

Systems Programming: Designing and Developing Distributed Applications explains how the development of distributed applications depends on a foundational understanding of the relationship among operating systems, networking, distributed systems, and programming. Uniquely organized around four viewpoints (process, communication, resource, and architecture), the fundamental and essential characteristics of distributed systems are explored in ways which cut across the various traditional subject area boundaries. The structures, configurations and behaviours of distributed systems are all examined, allowing readers to explore concepts from different perspectives, and to understand systems in depth, both from the component level and holistically. - Explains key ideas from the ground up, in a self-contained style, with material carefully sequenced to make it easy to absorb and follow. - Features a detailed case study that is designed to serve as a common point of reference and to provide continuity across the different technical chapters. - Includes a 'putting it all together' chapter that looks at interesting distributed systems applications across their entire life-cycle from requirements analysis and design specifications to fully working applications with full source code. - Ancillary materials include problems and solutions, programming exercises, simulation experiments, and a wide range of fully working sample applications with complete source code developed in C++, C# and Java. - Special editions of the author's established 'workbenches' teaching and learning tools suite are included. These tools have been specifically designed to facilitate practical experimentation and simulation of complex and dynamic aspects of systems.




Designing Data-Intensive Applications


Book Description

Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures




Programming Distributed Computing Systems


Book Description

An introduction to fundamental theories of concurrent computation and associated programming languages for developing distributed and mobile computing systems. Starting from the premise that understanding the foundations of concurrent programming is key to developing distributed computing systems, this book first presents the fundamental theories of concurrent computing and then introduces the programming languages that help develop distributed computing systems at a high level of abstraction. The major theories of concurrent computation—including the π-calculus, the actor model, the join calculus, and mobile ambients—are explained with a focus on how they help design and reason about distributed and mobile computing systems. The book then presents programming languages that follow the theoretical models already described, including Pict, SALSA, and JoCaml. The parallel structure of the chapters in both part one (theory) and part two (practice) enable the reader not only to compare the different theories but also to see clearly how a programming language supports a theoretical model. The book is unique in bridging the gap between the theory and the practice of programming distributed computing systems. It can be used as a textbook for graduate and advanced undergraduate students in computer science or as a reference for researchers in the area of programming technology for distributed computing. By presenting theory first, the book allows readers to focus on the essential components of concurrency, distribution, and mobility without getting bogged down in syntactic details of specific programming languages. Once the theory is understood, the practical part of implementing a system in an actual programming language becomes much easier.




Distributed Systems Architecture


Book Description

Middleware is the bridge that connects distributed applications across different physical locations, with different hardware platforms, network technologies, operating systems, and programming languages. This book describes middleware from two different perspectives: from the viewpoint of the systems programmer and from the viewpoint of the applications programmer. It focuses on the use of open source solutions for creating middleware and the tools for developing distributed applications. The design principles presented are universal and apply to all middleware platforms, including CORBA and Web Services. The authors have created an open-source implementation of CORBA, called MICO, which is freely available on the web. MICO is one of the most successful of all open source projects and is widely used by demanding companies and institutions, and has also been adopted by many in the Linux community.* Provides a comprehensive look at the architecture and design of middlewarethe bridge that connects distributed software applications* Includes a complete, commercial-quality open source middleware system written in C++* Describes the theory of the middleware standard CORBA as well as how to implement a design using open source techniques