From Boolean Logic to Switching Circuits and Automata


Book Description

Logic networks and automata are facets of digital systems. The change of the design of logic networks from skills and art into a scientific discipline was possible by the development of the underlying mathematical theory called the Switching Theory. The fundamentals of this theory come from the attempts towards an algebraic description of laws of thoughts presented in the works by George J. Boole and the works on logic by Augustus De Morgan. As often the case in engineering, when the importance of a problem and the need for solving it reach certain limits, the solutions are searched by many scholars in different parts of the word, simultaneously or at about the same time, however, quite independently and often unaware of the work by other scholars. The formulation and rise of Switching Theory is such an example. This book presents a brief account of the developments of Switching Theory and highlights some less known facts in the history of it. The readers will find the book a fresh look into the development of the field revealing how difficult it has been to arrive at many of the concepts that we now consider obvious . Researchers in the history or philosophy of computing will find this book a valuable source of information that complements the standard presentations of the topic.
















The Algebraic Theory of Switching Circuits


Book Description

The Algebraic Theory of Switching Circuits covers the application of various algebraic tools to the delineation of the algebraic theory of switching circuits for automation with contacts and relays. This book is organized into five parts encompassing 31 chapters. Part I deals with the principles and application of Boolean algebra and the theory of finite fields (Galois fields). Part II emphasizes the importance of the sequential operation of the automata and the variables associated to the current and to the contacts. This part also tackles the recurrence relations that describe operations of the network and the principles of the so-called characteristic equations. Part III reviews the study of networks with secondary elements other than ordinary relays, while Part IV focuses on the fundamentals and application of multi-position contacts. Part V considers several topics related to circuit with electronic elements, including triodes, pentodes, transistors, and cryotrons. This book will be of great value to practicing engineers, mathematicians, and workers in the field of computers.







Switching and Finite Automata Theory


Book Description

Understand the structure, behaviour, and limitations of logic machines with this thoroughly updated third edition. Many new topics are included, such as CMOS gates, logic synthesis, logic design for emerging nanotechnologies, digital system testing, and asynchronous circuit design, to bring students up-to-speed with modern developments. The intuitive examples and minimal formalism of the previous edition are retained, giving students a text that is logical and easy to follow, yet rigorous. Kohavi and Jha begin with the basics, and then cover combinational logic design and testing, before moving on to more advanced topics in finite-state machine design and testing. Theory is made easier to understand with 200 illustrative examples, and students can test their understanding with over 350 end-of-chapter review questions.




Logic Synthesis and Verification Algorithms


Book Description

Logic Synthesis and Verification Algorithms is a textbook designed for courses on VLSI Logic Synthesis and Verification, Design Automation, CAD and advanced level discrete mathematics. It also serves as a basic reference work in design automation for both professionals and students. Logic Synthesis and Verification Algorithms is about the theoretical underpinnings of VLSI (Very Large Scale Integrated Circuits). It combines and integrates modern developments in logic synthesis and formal verification with the more traditional matter of Switching and Finite Automata Theory. The book also provides background material on Boolean algebra and discrete mathematics. A unique feature of this text is the large collection of solved problems. Throughout the text the algorithms covered are the subject of one or more problems based on the use of available synthesis programs.