Calculus for Computer Graphics


Book Description

Students studying different branches of computer graphics have to be familiar with geometry, matrices, vectors, rotation transforms, quaternions, curves and surfaces and as computer graphics software becomes increasingly sophisticated, calculus is also being used to resolve its associated problems. In this 2nd edition, the author extends the scope of the original book to include applications of calculus in the areas of arc-length parameterisation of curves, geometric continuity, tangent and normal vectors, and curvature. The author draws upon his experience in teaching mathematics to undergraduates to make calculus appear no more challenging than any other branch of mathematics. He introduces the subject by examining how functions depend upon their independent variables, and then derives the appropriate mathematical underpinning and definitions. This gives rise to a function’s derivative and its antiderivative, or integral. Using the idea of limits, the reader is introduced to derivatives and integrals of many common functions. Other chapters address higher-order derivatives, partial derivatives, Jacobians, vector-based functions, single, double and triple integrals, with numerous worked examples, and over a hundred and seventy colour illustrations. This book complements the author’s other books on mathematics for computer graphics, and assumes that the reader is familiar with everyday algebra, trigonometry, vectors and determinants. After studying this book, the reader should understand calculus and its application within the world of computer graphics, games and animation.




From Calculus to Computers


Book Description

Classroom resource material allowing the integration of mathematics history into undergraduate mathematics teaching.




Abstract Computing Machines


Book Description

The book emphasizes the design of full-fledged, fully normalizing lambda calculus machinery, as opposed to the just weakly normalizing machines.




Mathematics for Computer Graphics


Book Description

This is a concise and informal introductory book on the mathematical concepts that underpin computer graphics. The author, John Vince, makes the concepts easy to understand, enabling non-experts to come to terms with computer animation work. The book complements the author's other works and is written in the same accessible and easy-to-read style. It is also a useful reference book for programmers working in the field of computer graphics, virtual reality, computer animation, as well as students on digital media courses, and even mathematics courses.




Calculus for Engineering Students


Book Description

Calculus for Engineering Students: Fundamentals, Real Problems, and Computers insists that mathematics cannot be separated from chemistry, mechanics, electricity, electronics, automation, and other disciplines. It emphasizes interdisciplinary problems as a way to show the importance of calculus in engineering tasks and problems. While concentrating on actual problems instead of theory, the book uses Computer Algebra Systems (CAS) to help students incorporate lessons into their own studies. Assuming a working familiarity with calculus concepts, the book provides a hands-on opportunity for students to increase their calculus and mathematics skills while also learning about engineering applications. - Organized around project-based rather than traditional homework-based learning - Reviews basic mathematics and theory while also introducing applications - Employs uniform chapter sections that encourage the comparison and contrast of different areas of engineering




Mathematics for Computer Science


Book Description

This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.







Mathematical Foundations of Computer Networking


Book Description

Mathematical techniques pervade current research in computer networking, yet are not taught to most computer science undergraduates. This self-contained, highly-accessible book bridges the gap, providing the mathematical grounding students and professionals need to successfully design or evaluate networking systems. The only book of its kind, it brings together information previously scattered amongst multiple texts. It first provides crucial background in basic mathematical tools, and then illuminates the specific theories that underlie computer networking. Coverage includes: * Basic probability * Statistics * Linear Algebra * Optimization * Signals, Systems, and Transforms, including Fourier series and transforms, Laplace transforms, DFT, FFT, and Z transforms * Queuing theory * Game Theory * Control theory * Information theory




Mathematics From the Birth of Numbers


Book Description

An illustrated exploration of mathematics and its history, beginning with a study of numbers and their symbols, and continuing with a broad survey that includes consideration of algebra, geometry, hyperbolic functions, fractals, and many other mathematical functions.