From MEMS to Bio-MEMS and Bio-NEMS Manufacturing Techniques and Applications


Book Description

From MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications details manufacturing techniques applicable to bionanotechnology. After reviewing MEMS techniques, materials, and modeling, the author covers nanofabrication, genetically engineered proteins, artificial cells, nanochemistry, and self-assembly. He also discusses scaling laws in MEMS and NEMS, actuators, fluidics, and power and brains in miniature devices. He concludes with coverage of various MEMS and NEMS applications. Fully illustrated in color, the text contains end-of-chapter problems, worked examples, extensive references for further reading, and an extensive glossary of terms.




Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set


Book Description

Now in its third edition, Fundamentals of Microfabrication and Nanotechnology continues to provide the most complete MEMS coverage available. Thoroughly revised and updated the new edition of this perennial bestseller has been expanded to three volumes, reflecting the substantial growth of this field. It includes a wealth of theoretical and practical information on nanotechnology and NEMS and offers background and comprehensive information on materials, processes, and manufacturing options. The first volume offers a rigorous theoretical treatment of micro- and nanosciences, and includes sections on solid-state physics, quantum mechanics, crystallography, and fluidics. The second volume presents a very large set of manufacturing techniques for micro- and nanofabrication and covers different forms of lithography, material removal processes, and additive technologies. The third volume focuses on manufacturing techniques and applications of Bio-MEMS and Bio-NEMS. Illustrated in color throughout, this seminal work is a cogent instructional text, providing classroom and self-learners with worked-out examples and end-of-chapter problems. The author characterizes and defines major research areas and illustrates them with examples pulled from the most recent literature and from his own work.




From MEMS to Bio-MEMS and Bio-NEMS


Book Description

From MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications details manufacturing techniques applicable to bionanotechnology. After reviewing MEMS techniques, materials, and modeling, the author covers nanofabrication, genetically engineered proteins, artificial cells, nanochemistry, and self-assembly. He also discusses scaling laws in MEMS and NEMS, actuators, fluidics, and power and brains in miniature devices. He concludes with coverage of various MEMS and NEMS applications. Fully illustrated in color, the text contains end-of-chapter problems, worked examples, extensive references for further reading, and an extensive glossary of terms. Details the Nanotechnology, Biology, and Manufacturing Techniques Applicable to Bionanotechnology Topics include: Nonlithography manufacturing techniques with lithography-based methods Nature as an engineering guide and contrasts top-down and bottom-up approaches Packaging, assembly, and self-assembly from ICs to DNA and biological cells Selected new MEMS and NEMS processes and materials, metrology techniques, and modeling Scaling laws, actuators, power generation, and the implementation of brains in miniaturizes devices Different strategies for making micromachines smarter The transition out of the laboratory and into the marketplace The third volume in Fundamentals of Microfabrication and Nanotechnology, Third Edition, Three-Volume Set, the book discusses top-down and bottom-up manufacturing methods and explains how to use nature as a guide. It provides a better understanding of how to match different manufacturing options with a given application that students can use to identify additional killer MEMS and NEMS applications. Other volumes in the set include: Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology Manufacturing Techniques for Microfabrication and Nanotechnology




Mems for Biomedical Applications


Book Description

The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy




Advanced MEMS/NEMS Fabrication and Sensors


Book Description

This book begins by introducing new and unique fabrication, micromachining, and integration manufacturing methods for MEMS (Micro-Electro-Mechanical Systems) and NEMS (Nano-Electro-Mechanical Systems) devices, as well as novel nanomaterials for sensor fabrications. The second section focuses on novel sensors based on these emerging MEMS/NEMS fabrication methods, and their related applications in industrial, biomedical, and environmental monitoring fields, which makes up the sensing layer (or perception layer) in IoT architecture. This authoritative guide offers graduate students, postgraduates, researchers, and practicing engineers with state-of-the-art processes and cutting-edge technologies on MEMS /NEMS, micro- and nanomachining, and microsensors, addressing progress in the field and prospects for future development. Presents latest international research on MEMS/NEMS fabrication technologies and novel micro/nano sensors; Covers a broad spectrum of sensor applications; Written by leading experts in the field.




Advanced Micro- and Nano-manufacturing Technologies


Book Description

This volume focuses on the fundamentals and advancements in micro and nanomanufacturing technologies applied in the biomedical and biochemical domain. The contents of this volume provide comprehensive coverage of the physical principles of advanced manufacturing technologies and the know-how of their applications in the fabrication of biomedical devices and systems. The book begins by documenting the journey of miniaturization and micro-and nano-fabrication. It then delves into the fundamentals of various advanced technologies such as micro-wire moulding, 3D printing, lithography, imprinting, direct laser machining, and laser-induced plasma-assisted machining. It also covers laser-based technologies which are a promising option due to their flexibility, ease in control and application, high precision, and availability. These technologies can be employed to process several materials such as glass, polymers: polycarbonate, polydimethylsiloxane, polymethylmethacrylate, and metals such as stainless steel, which are commonly used in the fabrication of biomedical devices, such as microfluidic technology, optical and fiber-optic sensors, and electro-chemical bio-sensors. It also discusses advancements in various MEMS/NEMS based technologies and their applications in energy conversion and storage devices. The chapters are written by experts from the fields of micro- and nano-manufacturing, materials engineering, nano-biotechnology, and end-users such as clinicians, engineers, academicians of interdisciplinary background. This book will be a useful guide for academia and industry alike.




Manufacturing Techniques for Microfabrication and Nanotechnology


Book Description

Designed for science and engineering students, this text focuses on emerging trends in processes for fabricating MEMS and NEMS devices. The book reviews different forms of lithography, subtractive material removal processes, and additive technologies. Both top-down and bottom-up fabrication processes are exhaustively covered and the merits of the different approaches are compared. Students can use this color volume as a guide to help establish the appropriate fabrication technique for any type of micro- or nano-machine.




Nanopackaging


Book Description

This book presents a comprehensive overview of nanoscale electronics and systems packaging, and covers nanoscale structures, nanoelectronics packaging, nanowire applications in packaging, and offers a roadmap for future trends. Composite materials are studied for high-k dielectrics, resistors and inductors, electrically conductive adhesives, conductive "inks," underfill fillers, and solder enhancement. The book is intended for industrial and academic researchers, industrial electronics packaging engineers who need to keep abreast of progress in their field, and others with interests in nanotechnology. It surveys the application of nanotechnologies to electronics packaging, as represented by current research across the field.




Novel Advances in Microsystems Technologies and Their Applications


Book Description

Microsystems technologies have found their way into an impressive variety of applications, from mobile phones, computers, and displays to smart grids, electric cars, and space shuttles. This multidisciplinary field of research extends the current capabilities of standard integrated circuits in terms of materials and designs and complements them by creating innovative components and smaller systems that require lower power consumption and display better performance. Novel Advances in Microsystems Technologies and their Applications delves into the state of the art and the applications of microsystems and microelectronics-related technologies. Featuring contributions by academic and industrial researchers from around the world, this book: Examines organic and flexible electronics, from polymer solar cell to flexible interconnects for the co-integration of micro-electromechanical systems (MEMS) with complementary metal oxide semiconductors (CMOS) Discusses imaging and display technologies, including MEMS technology in reflective displays, the fabrication of thin-film transistors on glass substrates, and new techniques to display and quickly transmit high-quality images Explores sensor technologies for sensing electrical currents and temperature, monitoring structural health and critical industrial processes, and more Covers biomedical microsystems, including biosensors, point-of-care devices, neural stimulation and recording, and ultra-low-power biomedical systems Written for researchers, engineers, and graduate students in electrical and biomedical engineering, this book reviews groundbreaking technology, trends, and applications in microelectronics. Its coverage of the latest research serves as a source of inspiration for anyone interested in further developing microsystems technologies and creating new applications.




Wireless MEMS Networks and Applications


Book Description

Wireless MEMS Networks and Applications reviews key emerging applications of MEMS in wireless and mobile networks. This book covers the different types of wireless MEMS devices, also exploring MEMS in smartphones, tablets, and the MEMS used for energy harvesting. The book reviews the range of applications of wireless MEMS networks in manufacturing, infrastructure monitoring, environmental monitoring, space applications, agricultural monitoring for food safety, health applications, and systems for smart cities. - Focuses on the use of MEMS in the emerging area of wireless applications - Contains comprehensive coverage of the range of applications of MEMS for wireless networks - Presents an international range of expert contributors who identify key research in the field