From Past to Future: Graßmann's Work in Context


Book Description

On the occasion of the 200th anniversary of the birth of Hermann Graßmann (1809-1877), an interdisciplinary conference was held in Potsdam, Germany, and in Graßmann's hometown Szczecin, Poland. The idea of the conference was to present a multi-faceted picture of Graßmann, and to uncover the complexity of the factors that were responsible for his creativity. The conference demonstrated not only the very influential reception of his work at the turn of the 20th century, but also the unexpected modernity of his ideas, and their continuing development in the 21st century. This book contains 37 papers presented at the conference. They investigate the significance of Graßmann's work for philosophical as well as for scientific and methodological questions, for comparative philology in general and for Indology in particular, for psychology, physiology, religious studies, musicology, didactics, and, last but not least, mathematics. In addition, the book contains numerous illustrations and English translations of original sources, which are published here for the first time. These include life histories of Graßmann (written by his son Justus) and of his brother Robert (written by Robert himself), as well as the paper "On the concept and extent of pure theory of number'' by Justus Graßmann (the father).




Foundations of Geometric Algebra Computing


Book Description

The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.




Space-Time Algebra


Book Description

This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, and enables physicists to understand topics in engineering, and engineers to understand topics in physics (including aspects in frontier areas), in a way which no other single mathematical system could hope to make possible. There is another aspect to Geometric Algebra, which is less tangible, and goes beyond questions of mathematical power and range. This is the remarkable insight it gives to physical problems, and the way it constantly suggests new features of the physics itself, not just the mathematics. Examples of this are peppered throughout ‘Space-Time Algebra’, despite its short length, and some of them are effectively still research topics for the future. From the Foreward by Anthony Lasenby




The Rise and Fall of the German Combinatorial Analysis


Book Description

This text presents the ideas of a particular group of mathematicians of the late 18th century known as “the German combinatorial school” and its influence. The book tackles several questions concerning the emergence and historical development of the German combinatorial analysis, which was the unfinished scientific research project of that group of mathematicians. The historical survey covers the three main episodes in the evolution of that research project: its theoretical antecedents (which go back to the innovative ideas on mathematical analysis of the late 17th century) and first formulation, its consolidation as a foundationalist project of mathematical analysis, and its dissolution at the beginning of the 19th century. In addition, the book analyzes the influence of the ideas of the combinatorial school on German mathematics throughout the 19th century.




Introduction to Geometric Algebra Computing


Book Description

From the Foreword: "Dietmar Hildenbrand's new book, Introduction to Geometric Algebra Computing, in my view, fills an important gap in Clifford's geometric algebra literature...I can only congratulate the author for the daring simplicity of his novel educational approach taken in this book, consequently combined with hands on computer based exploration. Without noticing, the active reader will thus educate himself in elementary geometric algebra algorithm development, geometrically intuitive, highly comprehensible, and fully optimized." --Eckhard Hitzer, International Christian University, Tokyo, Japan Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap with an introduction to Geometric Algebra from an engineering/computing perspective. This book is intended to give a rapid introduction to computing with Geometric Algebra and its power for geometric modeling. From the geometric objects point of view, it focuses on the most basic ones, namely points, lines and circles. This algebra is called Compass Ruler Algebra, since it is comparable to working with a compass and ruler. The book explores how to compute with these geometric objects, and their geometric operations and transformations, in a very intuitive way. The book follows a top-down approach, and while it focuses on 2D, it is also easily expandable to 3D computations. Algebra in engineering applications such as computer graphics, computer vision and robotics are also covered.




Real Spinorial Groups


Book Description

This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry. After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples. Lastly, the book provides pointers to major applications, an extensive bibliography and an alphabetic index. Combining the characteristics of a self-contained research monograph and a state-of-the-art survey, this book is a valuable foundation reference resource on applications for both undergraduate and graduate students.




Grassmann Algebra Volume 1: Foundations


Book Description

Grassmann Algebra Volume 1: Foundations Exploring extended vector algebra with Mathematica Grassmann algebra extends vector algebra by introducing the exterior product to algebraicize the notion of linear dependence. With it, vectors may be extended to higher-grade entities: bivectors, trivectors, … multivectors. The extensive exterior product also has a regressive dual: the regressive product. The pair behaves a little like the Boolean duals of union and intersection. By interpreting one of the elements of the vector space as an origin point, points can be defined, and the exterior product can extend points into higher-grade located entities from which lines, planes and multiplanes can be defined. Theorems of Projective Geometry are simply formulae involving these entities and the dual products. By introducing the (orthogonal) complement operation, the scalar product of vectors may be extended to the interior product of multivectors, which in this more general case may no longer result in a scalar. The notion of the magnitude of vectors is extended to the magnitude of multivectors: for example, the magnitude of the exterior product of two vectors (a bivector) is the area of the parallelogram formed by them. To develop these foundational concepts, we need only consider entities which are the sums of elements of the same grade. This is the focus of this volume. But the entities of Grassmann algebra need not be of the same grade, and the possible product types need not be constricted to just the exterior, regressive and interior products. For example quaternion algebra is simply the Grassmann algebra of scalars and bivectors under a new product operation. Clifford, geometric and higher order hypercomplex algebras, for example the octonions, may be defined similarly. If to these we introduce Clifford's invention of a scalar which squares to zero, we can define entities (for example dual quaternions) with which we can perform elaborate transformations. Exploration of these entities, operations and algebras will be the focus of the volume to follow this. There is something fascinating about the beauty with which the mathematical structures that Hermann Grassmann discovered describe the physical world, and something also fascinating about how these beautiful structures have been largely lost to the mainstreams of mathematics and science. He wrote his seminal Ausdehnungslehre (Die Ausdehnungslehre. Vollständig und in strenger Form) in 1862. But it was not until the latter part of his life that he received any significant recognition for it, most notably by Gibbs and Clifford. In recent times David Hestenes' Geometric Algebra must be given the credit for much of the emerging awareness of Grass­mann's innovation. In the hope that the book be accessible to scientists and engineers, students and professionals alike, the text attempts to avoid any terminology which does not make an essential contribution to an understanding of the basic concepts. Some familiarity with basic linear algebra may however be useful. The book is written using Mathematica, a powerful system for doing mathematics on a computer. This enables the theory to be cross-checked with computational explorations. However, a knowledge of Mathematica is not essential for an appreciation of Grassmann's beautiful ideas.




Exterior Algebras


Book Description

Exterior Algebras: Elementary Tribute to Grassmann's Ideas provides the theoretical basis for exterior computations. It first addresses the important question of constructing (pseudo)-Euclidian Grassmmann's algebras. Then, it shows how the latter can be used to treat a few basic, though significant, questions of linear algebra, such as co-linearity, determinant calculus, linear systems analyzing, volumes computations, invariant endomorphism considerations, skew-symmetric operator studies and decompositions, and Hodge conjugation, amongst others. - Presents a self-contained guide that does not require any specific algebraic background - Includes numerous examples and direct applications that are suited for beginners




The Prehistory of Mathematical Structuralism


Book Description

This edited volume explores the previously underacknowledged 'pre-history' of mathematical structuralism, showing that structuralism has deep roots in the history of modern mathematics. The contributors explore this history along two distinct but interconnected dimensions. First, they reconsider the methodological contributions of major figures in the history of mathematics. Second, they re-examine a range of philosophical reflections from mathematically-inclinded philosophers like Russell, Carnap, and Quine, whose work led to profound conclusions about logical, epistemological, and metaphysic.




Integral Biomathics


Book Description

Perhaps the most distinct question in science throughout the ages has been the one of perceivable reality, treated both in physics and philosophy. Reality is acting upon us, and we, and life in general, are acting upon reality. Potentiality, found both in quantum reality and in the activity of life, plays a key role. In quantum reality observation turns potentiality into reality. Again, life computes possibilities in various ways based on past actions, and acts on the basis of these computations. This book is about a new approach to biology (and physics, of course!). Its subtitle suggests a perpetual movement and interplay between two elusive aspects of modern science — reality/matter and potentiality/mind, between physics and biology — both captured and triggered by mathematics — to understand and explain emergence, development and life all the way up to consciousness. But what is the real/potential difference between living and non-living matter? How does time in potentiality differ from time in reality? What we need to understand these differences is an integrative approach. This book contemplates how to encircle life to obtain a formal system, equivalent to the ones in physics. Integral Biomathics attempts to explore the interplay between reality and potentiality.