From Perturbative to Constructive Renormalization


Book Description

The last decade has seen striking progress in the subject of renormalization in quantum field theory. The old subject of perturbative renormalization has been revived by the use of powerful methods such as multiscale decompositions; precise estimates have been added to the initial theorems on finiteness of renormalized perturbation theory, with new results on its large order asymptotics. Furthermore, constructive field theory has reached one of its major goals, the mathematically rigorous construction of some renormalizable quantum field theories. For these models one can in particular investigate rigorously the phenomenon of asymptotic freedom, which plays a key role in our current understanding of the interaction among elementary particles. However, until this book, there has been no pedagogical synthesis of these new developments. Vincent Rivasseau, who has been actively involved in them, now describes them for a wider audience. There are, in fact, common concepts at the heart of the progress on perturbative and constructive techniques. Exploiting these similarities, the author uses perturbative renormalization, which is the more widely known and conceptually simpler of the two cases, to explain the less familiar but more mathematically meaningful constructive renormalization. Originally published in 1991. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Non-perturbative Renormalization


Book Description

The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providing a mathematical construction of models at low dimensions and discussing the removal of the ultraviolet and infrared cut-off, the verification of the axioms and the validity of Ward Identities with the relative anomalies. The second part is devoted to lattice 2D Statistical Physics, analyzing in particular the theory of universality in perturbed Ising models and the computation of the non-universal critical indices in Vertex or Ashkin-Teller models. Finally the third part is devoted to the analysis of complex quantum fluids showing Luttinger of Fermi liquid behavior, like the 1D or 2D Hubbard model.




Quantum Mathematical Physics


Book Description

Quantum physics has been highly successful for more than 90 years. Nevertheless, a rigorous construction of interacting quantum field theory is still missing. Moreover, it is still unclear how to combine quantum physics and general relativity in a unified physical theory. Attacking these challenging problems of contemporary physics requires highly advanced mathematical methods as well as radically new physical concepts. This book presents different physical ideas and mathematical approaches in this direction. It contains a carefully selected cross-section of lectures which took place in autumn 2014 at the sixth conference ``Quantum Mathematical Physics - A Bridge between Mathematics and Physics'' in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.




Advances in Noncommutative Geometry


Book Description

This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23–April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.




Quantum Spaces


Book Description

This book confirms noncommutative geometry as an increasingly useful tool for the description of intricate condensed matter phenomena. It describes the striking progress recently made in gathering all the interactions and fields of the standard model into a non-commutative geometry on a simple internal space. Coverage also details the very recent technique of renormalization of quantum field theories on non-commutative space-time.




Combinatorial Physics


Book Description

The goal of the book is to use combinatorial techniques to solve fundamental physics problems, and vice-versa, to use theoretical physics techniques to solve combinatorial problems.




Non-perturbative Renormalization


Book Description

Differential-algebraic equations (DAEs) provide an essential tool for system modeling and analysis within different fields of applied sciences and engineering. This book addresses modeling issues and analytical properties of DAEs, together with some applications in electrical circuit theory. Beginning with elementary aspects, the author succeeds in providing a self-contained and comprehensive presentation of several advanced topics in DAE theory, such as the full characterization of linear time-varying equations via projector methods or the geometric reduction of nonlinear systems. Recent results on singularities are extensively discussed. The book also addresses in detail differential-algebraic models of electrical and electronic circuits, including index characterizations and qualitative aspects of circuit dynamics. In particular, the reader will find a thorough discussion of the state/semistate dichotomy in circuit modeling. The state formulation problem, which has attracted much attention in the engineering literature, is cleverly tackled here as a reduction problem on semistate models.




A Prelude to Quantum Field Theory


Book Description

"A Prelude to Quantum Field Theory offers a short introduction to quantum field theory (QFT), a powerful framework for understanding particle behavior that is an essential tool across many subfields of physics. A subject that is typically taught at the graduate level in most physics departments, quantum field theory is a unification of standard quantum theories and special relativity, which depicts all particles as "excitations" that arise in underlying fields. It extends quantum mechanics, the modern theory of one or few particles, in a way that is useful for the analysis of many-particle systems in the real world. As it requires a different style of thinking from quantum mechanics, which is typically the undergraduate physics student's first encounter with the quantum world, many beginners struggle with the transition to quantum field theory, especially when working with traditional textbooks. Existing books on the subject often tend to be large, sophisticated, and complete; and an overwhelming wealth of information and technical detail makes it difficult for the novice to discern what is most important. This book is a concise, friendly entrée for QFT-beginners, guiding the reader from the style of quantum mechanical thinking to that of QFT, and distilling the key ideas without a welter of unnecessary detail. In contrast with standard texts, which are predominantly particle physics-centric, this book is designed to be "subfield-neutral" - usable by students of any background and interest, and easily adaptable in a course setting according to instructors' preferences. The authors' conviction is that QFT is a core element of physics that should be understood by all PhD physicists-but that developing an appreciation for it does not require digesting a large, encyclopedic volume"--




Introduction to a Renormalisation Group Method


Book Description

This is a primer on a mathematically rigorous renormalisation group theory, presenting mathematical techniques fundamental to renormalisation group analysis such as Gaussian integration, perturbative renormalisation and the stable manifold theorem. It also provides an overview of fundamental models in statistical mechanics with critical behaviour, including the Ising and φ4 models and the self-avoiding walk. The book begins with critical behaviour and its basic discussion in statistical mechanics models, and subsequently explores perturbative and non-perturbative analysis in the renormalisation group. Lastly it discusses the relation of these topics to the self-avoiding walk and supersymmetry. Including exercises in each chapter to help readers deepen their understanding, it is a valuable resource for mathematicians and mathematical physicists wanting to learn renormalisation group theory.




Mathematical Aspects of Quantum Field Theory


Book Description

Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.