Frontiers in Quantum Computing


Book Description

Quantum Computing is an ever-increasing field of interest both from a conceptual and applied standpoint. Quantum Computing, belonging to the so called "Quantum Information Science", is founded on the principles of Quantum Mechanics and Information Science. Quantum Mechanics has radically changed our vision and understanding of the physical reality and has had also an enormous technological and societal impact. On the other hand, the developing of Information Theory, including computer science and communications theory, made possible the information "revolution" which had a deep impact on our everyday life. Quantum Computing then relates to the possibility to represent, process and manipulate information by using the principles of quantum mechanics. Apart the theoretical importance of quantum computing to further understand the quantum mechanical behavior of physical systems and the physical foundation of information itself at the most elementary level, probably the most interesting feature of Quantum Computing is related to the possibility to design and realize an actual quantum computer which processes information in the form of quantum-bits or qubits. The great interest of scientific community in the realization of such devices mainly concerns the common believe they could be enormously faster than their classical counterparts so allowing their employment in all the applied fields where computational power is a key feature. Furthermore, the study of Quantum Computing, both at the physical and computational level, would be very important for a deeper understanding of the quantum behavior of a very wide range of physical systems including condensed matter, living systems, elementary particles, astrophysical structures and so on. Despite the general theoretical basis of quantum computing are sufficiently understood, the actual realization of a general - purpose and really usable quantum computer has posed great difficulties so far, mainly related to the issue of "quantum decoherence", the computational speed and scalability many of which still remain substantially unsolved. This volume doesn't mean to represent a complete or a beginner guide to Quantum Computing but has the aim to present some of its most interesting and fascinating developments in different frontier areas related to both theoretical and applied aspects, such, for example, the possibility to realize a quantum superfast "hypercomputing" system using water molecules as physical substrate to process, storage and retrieve information; the connection between quantum computers and quantum gravity; the development of an "instantaneous quantum computer algorithm"; the realization of a universal quantum computer, of a brain-like quantum supercomputer and many others frontiers topics. The target audience of this book is then composed by scientists and researchers interested in the most advanced theoretical and applied developments of quantum computation and quantum information.




Quantum Steampunk


Book Description

"The science-fiction genre known as steampunk juxtaposes futuristic technologies with Victorian settings. This fantasy is becoming reality at the intersection of two scientific fields-twenty-first-century quantum physics and nineteenth-century thermodynamics, or the study of energy-in a discipline known as quantum steampunk"--




Frontiers of Engineering


Book Description

This volume presents papers on the topics covered at the National Academy of Engineering's 2018 US Frontiers of Engineering Symposium. Every year the symposium brings together 100 outstanding young leaders in engineering to share their cutting-edge research and innovations in selected areas. The 2018 symposium was held September 5-7 and hosted by MIT Lincoln Laboratory in Lexington, Massachusetts. The intent of this book is to convey the excitement of this unique meeting and to highlight innovative developments in engineering research and technical work.




Quantum Computing


Book Description

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.




Mind, Matter, and Quantum Mechanics


Book Description

Nature appears to be composed of two completely different kinds of things: rocklike things and idealike things. The first is epitomized by an enduring rock, the second by a fleeting thought. A rock can be experienced by many of us together, while a thought seems to belong to one of us alone. Thoughts and rocks are intertwined in the unfolding of nature, as Michelangelo's David so eloquently attests. Yet is it possible to under stand rationally how two completely different kinds of things can interact with each other? Logic says no, and history confirms that verdict. To form a rational comprehension of the interplay between the matterlike and mind like parts of nature these two components ought to be understood as aspects of some single primal stuff. But what is the nature of a primal stuff that can have mind and matter as two of its aspects? An answer to this age-old question has now been forced upon us. Physi cists, probing ever deeper into the nature of matter, found that they were forced to bring into their theory the human observers and their thoughts. Moreover, the mathematical structure of the theory combines in a marvelous way the features of nature that go with the concepts of mind and matter. Although it is possible, in the face of this linkage, to try to maintain the tra ditionallogical nonrelatedness of these two aspects of nature, that endeavor leads to great puzzles and mysteries.




New Frontiers in Cryptography


Book Description

This book provides comprehensive coverage of various Cryptography topics, while highlighting the most recent trends such as quantum, blockchain, lightweight, Chaotic and DNA cryptography. Moreover, this book covers cryptography primitives and its usage and applications and focuses on the fundamental principles of modern cryptography such as Stream Ciphers, block ciphers, public key algorithms and digital signatures. Readers will gain a solid foundation in cryptography and security. This book presents the fundamental mathematical concepts of cryptography. Moreover, this book presents hiding data techniques such as steganography and watermarking. The author also provides a comparative study of the different cryptographic methods, which can be used to solve security problems.




Feynman Lectures On Computation


Book Description

When, in 1984?86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a ?Feynmanesque? overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.




An Introduction To Quantum Field Theory


Book Description

An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.




Entanglement, Information, and the Interpretation of Quantum Mechanics


Book Description

Entanglement was initially thought by some to be an oddity restricted to the realm of thought experiments. However, Bell’s inequality delimiting local - havior and the experimental demonstration of its violation more than 25 years ago made it entirely clear that non-local properties of pure quantum states are more than an intellectual curiosity. Entanglement and non-locality are now understood to ?gure prominently in the microphysical world, a realm into which technology is rapidly hurtling. Information theory is also increasingly recognized by physicists and philosophers as intimately related to the foun- tions of mechanics. The clearest indicator of this relationship is that between quantum information and entanglement. To some degree, a deep relationship between information and mechanics in the quantum context was already there to be seen upon the introduction by Max Born and Wolfgang Pauli of the idea that the essence of pure quantum states lies in their provision of probabilities regarding the behavior of quantum systems, via what has come to be known as the Born rule. The signi?cance of the relationship between mechanics and information became even clearer with Leo Szilard’s analysis of James Clerk Maxwell’s infamous demon thought experiment. Here, in addition to examining both entanglement and quantum infor- tion and their relationship, I endeavor to critically assess the in?uence of the study of these subjects on the interpretation of quantum theory.




Elegance and Enigma


Book Description

Quantum mechanics is one of mankind's most remarkable intellectual achievements. Stunningly successful and elegant, it challenges our deepest intuitions about the world. In this book, seventeen physicists and philosophers, all deeply concerned with understanding quantum mechanics, reply to Schlosshauer's penetrating questions about the central issues. They grant us an intimate look at their radically different ways of making sense of the theory's strangeness. What is quantum mechanics about? What is it telling us about nature? Can quantum information or new experiments help lift the fog? And where are we headed next? Everyone interested in the contemporary but often longstanding conundrums of quantum theory, whether lay reader or expert, will find much food for thought in these pages. A wealth of personal reflections and anecdotes guarantee an engaging read. Participants: Guido Bacciagaluppi, Caslav Brukner, Jeffrey Bub, Arthur Fine, Christopher Fuchs, GianCarlo Ghirardi, Shelly Goldstein, Daniel Greenberger, Lucien Hardy, Anthony Leggett, Tim Maudlin, David Mermin, Lee Smolin, Antony Valentini, David Wallace, Anton Zeilinger, and Wojciech Zurek.