Hydrogen and Fuel Cells


Book Description

A hydrogen economy, in which this one gas provides the source of all energy needs, is often touted as the long-term solution to the environmental and security problems associated with fossil fuels. However, before hydrogen can be used as fuel on a global scale we must establish cost effective means of producing, storing, and distributing the gas, develop cost efficient technologies for converting hydrogen to electricity (e.g. fuel cells), and creating the infrastructure to support all this. Sorensen is the only text available that provides up to date coverage of all these issues at a level appropriate for the technical reader. The book not only describes the "how" and "where" aspects of hydrogen fuels cells usage, but also the obstacles and benefits of its use, as well as the social implications (both economically and environmental). Written by a world-renowned researcher in energy systems, this thoroughly illustrated and cross-referenced book is an excellent reference for researchers, professionals and students in the field of renewable energy. Updated sections on PEM fuel cells, Molten carbonate cells, Solid Oxide cells and Biofuel cells Updated material to reflect the growing commercial acceptance of stationary and portable fuel cell systems, while also recognizing the ongoing research in automotive fuel cell systems A new example of a regional system based on renewable energy sources reflects the growing international attention to uses of renewable energy as part of the energy grid Examples of life cycle analysis of environmental and social impacts




The Hype About Hydrogen


Book Description

Lately it has become a matter of conventional wisdom that hydrogen will solve many of our energy and environmental problems. Nearly everyone -- environmentalists, mainstream media commentators, industry analysts, General Motors, and even President Bush -- seems to expect emission-free hydrogen fuel cells to ride to the rescue in a matter of years, or at most a decade or two. Not so fast, says Joseph Romm. In The Hype about Hydrogen, he explains why hydrogen isn't the quick technological fix it's cracked up to be, and why cheering for fuel cells to sweep the market is not a viable strategy for combating climate change. Buildings and factories powered by fuel cells may indeed become common after 2010, Joseph Romm argues, but when it comes to transportation, the biggest source of greenhouse-gas emissions, hydrogen is unlikely to have a significant impact before 2050. The Hype about Hydrogen offers a hype-free explanation of hydrogen and fuel cell technologies, takes a hard look at the practical difficulties of transitioning to a hydrogen economy, and reveals why, given increasingly strong evidence of the gravity of climate change, neither government policy nor business investment should be based on the belief that hydrogen cars will have meaningful commercial success in the near or medium term. Romm, who helped run the federal government's program on hydrogen and fuel cells during the Clinton administration, provides a provocative primer on the politics, business, and technology of hydrogen and climate protection.




The Hydrogen Economy


Book Description

The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.




Fuel Cell Systems


Book Description

In light of recent alarming environmental trends combined with increasing commercial viability of fuel cells, the time is propitious for a book focusing on the systematic aspects of cell plant technology. This multidisciplinary text covers the main types of fuel cells, R&D issues, plant design and construction, and economic factors to provide industrial and academic researchers working in electrical systems design, electrochemistry, and engineering with a unique and comprehensive resource.




Fuel Cell Handbook


Book Description




Hydrogen and Fuel Cells


Book Description

Hydrogen and fuel cells are vital technologies to ensure a secure and CO2-free energy future. Their development will take decades of extensive public and private effort to achieve technology breakthroughs and commercial maturity. Government research programs are indispensable for catalyzing the development process. This report maps the IEA countries' current efforts to research, develop and deploy the interlocking elements that constitute a "hydrogen economy", including CO2 capture and storage when hydrogen is produced out of fossil fuels. It provides an overview of what is being done, and by whom, covering an extensive complexity of national government R & D programs. The survey highlights the potential for exploiting the benefits of the international cooperation. This book draws primarily upon information contributed by IEA governments. In virtually all the IEA countries, important R & D and policy efforts on hydrogen and fuel cells are in place and expanding. Some are fully-integrated, government-funded programs, some are a key element in an overall strategy spread among multiple public and private efforts. The large amount of information provided in this publication reflects the vast array of technologies and logistics required to build the "hydrogen economy."--Publisher description.




Nanotechnology in Fuel Cells


Book Description

Nanotechnology in Fuel Cells focuses on the use of nanotechnology in macroscopic and nanosized fuel cells to enhance their performance and lifespan. The book covers the fundamental design concepts and promising applications of nanotechnology-enhanced fuel cells and their advantages over traditional fuel cells in portable devices, including longer shelf life and lower cost. In the case of proton-exchange membrane fuel cells (PEMFCs), nano-membranes could provide 100 times higher conductivity of hydrogen ions in low humidity conditions than traditional membranes. For hydrogen fuel cell, nanocatalysts (Pt hybrid nanoparticles) could provide 12 times higher catalytic activity. This is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient macro- and nanosized fuel cells. - Outlines how fuel cells can be nanoengineered to enhance their performance and lifespan - Covers a variety of fuel cell types, including proton-exchange membrane fuel cells and hydrogen-based fuel cells - Assesses the major challenges of nanoengineering fuel cells at an industrial scale




Hydrogen and Fuel Cell


Book Description

This book introduces readers to hydrogen as an essential energy carrier for use with renewable sources of primary energy. It provides an overview of the state of the art, while also highlighting the developmental and market potential of hydrogen in the context of energy technologies; mobile, stationary and portable applications; uninterruptible power supplies and in the chemical industry. Written by experienced practitioners, the book addresses the needs of engineers, chemists and business managers, as well as graduate students and researchers.




Electric, Hybrid, and Fuel Cell Vehicles


Book Description

This volume of "Encyclopedia of Sustainability Science and Technology, Second Edition," covers the electrification of vehicles, which is key to a sustainable future of transportation in both light-duty and heavy-duty vehicle sectors to address global concerns of climate change, air pollutant emissions, energy efficiency and energy security. Vehicle electrification includes several existing and emerging technologies and powertrain architectures such as conventional hybrid electric vehicles (HEVs), plug-in hybrids with various electric driving range, short- and long-range battery electric vehicles, as well as hydrogen fuel cell electric vehicles (FCEVs). Electrification will be key to connected autonomous vehicles, which are perceived to improve mobility, increase safety, reduce energy consumption and infrastructure costs, improve productivity, decrease traffic congestion and increase customer satisfaction. While electrification of vehicle technologies is relatively mature, technology improvement and economies of scale are needed to compete against incumbent technologies and to realize their benefits in the marketplace. Significant infrastructure development is needed in the case of hydrogen fuel cell vehicles and to a lesser extent for plug-in electric vehicles. Vehicle efficiency improvement is sought through a combination of several approaches, including weight reduction, engine downsizing, increased engine compression ratio with high octane fuels, and the use of compression ignition engines with low octane fuels. Liquid hydrocarbon fuels are needed in applications where high storage energy density is required such as long-haul class-8 combination heavy-duty trucks. Shared mobility is another emerging concept that enables access to transportation services on an as-needed basis. This approach can enhance accessibility to transportation, decrease number of vehicles on the road, reduce energy use and impact on the environment, reduce cost of transportation and the need for parking, and reduce transportation time between origin and destination. In all, the reader will receive a comprehensive introduction to electric vehicles and technology trends, including energy storage, in light-, medium-, and heavy-duty sectors, as well as the infrastructure development that will be required to realize these benefits for society.




Fuel Cell Benefits


Book Description