Hydrogen and Fuel Cells


Book Description

Hydrogen and fuel cells are vital technologies to ensure a secure and CO2-free energy future. Their development will take decades of extensive public and private effort to achieve technology breakthroughs and commercial maturity. Government research programs are indispensable for catalyzing the development process. This report maps the IEA countries' current efforts to research, develop and deploy the interlocking elements that constitute a "hydrogen economy", including CO2 capture and storage when hydrogen is produced out of fossil fuels. It provides an overview of what is being done, and by whom, covering an extensive complexity of national government R & D programs. The survey highlights the potential for exploiting the benefits of the international cooperation. This book draws primarily upon information contributed by IEA governments. In virtually all the IEA countries, important R & D and policy efforts on hydrogen and fuel cells are in place and expanding. Some are fully-integrated, government-funded programs, some are a key element in an overall strategy spread among multiple public and private efforts. The large amount of information provided in this publication reflects the vast array of technologies and logistics required to build the "hydrogen economy."--Publisher description.




Fuel Cells: Technologies for Fuel Processing


Book Description

Fuel Cells: Technologies for Fuel Processing provides an overview of the most important aspects of fuel reforming to the generally interested reader, researcher, technologist, teacher, student, or engineer. The topics covered include all aspects of fuel reforming: fundamental chemistry, different modes of reforming, catalysts, catalyst deactivation, fuel desulfurization, reaction engineering, novel reforming concepts, thermodynamics, heat and mass transfer issues, system design, and recent research and development. While no attempt is made to describe the fuel cell itself, there is sufficient description of the fuel cell to show how it affects the fuel reformer. By focusing on the fundamentals, this book aims to be a source of information now and in the future. By avoiding time-sensitive information/analysis (e.g., economics) it serves as a single source of information for scientists and engineers in fuel processing technology. The material is presented in such a way that this book will serve as a reference for graduate level courses, fuel cell developers, and fuel cell researchers. - Chapters written by experts in each area - Extensive bibliography supporting each chapter - Detailed index - Up-to-date diagrams and full colour illustrations







Fuel Cell Handbook


Book Description




Hydrogen and Fuel Cells


Book Description

A hydrogen economy, in which this one gas provides the source of all energy needs, is often touted as the long-term solution to the environmental and security problems associated with fossil fuels. However, before hydrogen can be used as fuel on a global scale we must establish cost effective means of producing, storing, and distributing the gas, develop cost efficient technologies for converting hydrogen to electricity (e.g. fuel cells), and creating the infrastructure to support all this. Sorensen is the only text available that provides up to date coverage of all these issues at a level appropriate for the technical reader. The book not only describes the "how" and "where" aspects of hydrogen fuels cells usage, but also the obstacles and benefits of its use, as well as the social implications (both economically and environmental). Written by a world-renowned researcher in energy systems, this thoroughly illustrated and cross-referenced book is an excellent reference for researchers, professionals and students in the field of renewable energy. Updated sections on PEM fuel cells, Molten carbonate cells, Solid Oxide cells and Biofuel cells Updated material to reflect the growing commercial acceptance of stationary and portable fuel cell systems, while also recognizing the ongoing research in automotive fuel cell systems A new example of a regional system based on renewable energy sources reflects the growing international attention to uses of renewable energy as part of the energy grid Examples of life cycle analysis of environmental and social impacts




Hydrogen and Fuel Cell


Book Description

This book introduces readers to hydrogen as an essential energy carrier for use with renewable sources of primary energy. It provides an overview of the state of the art, while also highlighting the developmental and market potential of hydrogen in the context of energy technologies; mobile, stationary and portable applications; uninterruptible power supplies and in the chemical industry. Written by experienced practitioners, the book addresses the needs of engineers, chemists and business managers, as well as graduate students and researchers.




Fuel Cell Systems


Book Description

In light of recent alarming environmental trends combined with increasing commercial viability of fuel cells, the time is propitious for a book focusing on the systematic aspects of cell plant technology. This multidisciplinary text covers the main types of fuel cells, R&D issues, plant design and construction, and economic factors to provide industrial and academic researchers working in electrical systems design, electrochemistry, and engineering with a unique and comprehensive resource.




Modeling and Control of Fuel Cells


Book Description

The only book available on fuel cell modeling and control with distributed power generation applications The emerging fuel cell (FC) technology is growing rapidly in its applications from small-scale portable electronics to large-scale power generation. This book gives students, engineers, and scientists a solid understanding of the FC dynamic modeling and controller design to adapt FCs to particular applications in distributed power generation. The book begins with a fascinating introduction to the subject, including a brief history of the U.S. electric utility formation and restructuring. Next, it provides coverage of power deregulation and distributed generation (DG), DG types, fuel cell DGs, and the hydrogen economy. Building on that foundation, it covers: Principle operations of fuel cells Dynamic modeling and simulation of PEM and solid-oxide fuel cells Principle operations and modeling of electrolyzers Power electronic interfacing circuits for fuel cell applications Control of grid-connected and stand-alone fuel cell power generation systems Hybrid fuel cell–based energy system case studies Present challenges and the future of fuel cells MATLAB/SIMULINK-based models and their applications are available via a companion Web site. Modeling and Control of Fuel Cells is an excellent reference book for students and professionals in electrical, chemical, and mechanical engineering and scientists working in the FC area.




Fuel Cells


Book Description

The comprehensive, accessible introduction to fuel cells, their applications, and the challenges they pose Fuel cells electrochemical energy devices that produce electricity and heat present a significant opportunity for cleaner, easier, and more practical energy. However, the excitement over fuel cells within the research community has led to such rapid innovation and development that it can be difficult for those not intimately familiar with the science involved to figure out exactly how this new technology can be used. Fuel Cells: Problems and Solutions, Second Edition addresses this issue head on, presenting the most important information about these remarkable power sources in an easy-to-understand way. Comprising four important sections, the book explores: The fundamentals of fuel cells, how they work, their history, and much more The major types of fuel cells, including proton exchange membrane fuel cells (PEMFC), direct liquid fuel cells (DLFC), and many others The scientific and engineering problems related to fuel cell technology The commercialization of fuel cells, including a look at their uses around the world Now in its second edition, this book features fully revised coverage of the modeling of fuel cells and small fuel cells for portable devices, and all-new chapters on the structural and wetting properties of fuel cell components, experimental methods for fuel cell stacks, and nonconventional design principles for fuel cells, bringing the content fully up to date. Designed for advanced undergraduate and graduate students in engineering and chemistry programs, as well as professionals working in related fields, Fuel Cells is a compact and accessible introduction to the exciting world of fuel cells and why they matter.