Internal Combustion Engines


Book Description

This book presents the papers from the Internal Combustion Engines: Performance, fuel economy and emissions held in London, UK. This popular international conference from the Institution of Mechanical Engineers provides a forum for IC engine experts looking closely at developments for personal transport applications, though many of the drivers of change apply to light and heavy duty, on and off highway, transport and other sectors. These are exciting times to be working in the IC engine field. With the move towards downsizing, advances in FIE and alternative fuels, new engine architectures and the introduction of Euro 6 in 2014, there are plenty of challenges. The aim remains to reduce both CO2 emissions and the dependence on oil-derivate fossil fuels whilst meeting the future, more stringent constraints on gaseous and particulate material emissions as set by EU, North American and Japanese regulations. How will technology developments enhance performance and shape the next generation of designs? The book introduces compression and internal combustion engines' applications, followed by chapters on the challenges faced by alternative fuels and fuel delivery. The remaining chapters explore current improvements in combustion, pollution prevention strategies and data comparisons. - Presents the latest requirements and challenges for personal transport applications - Gives an insight into the technical advances and research going on in the IC Engines field - Provides the latest developments in compression and spark ignition engines for light and heavy-duty applications, automotive and other markets




Internal Combustion Engines Improving Performance, Fuel Economy and Emissions


Book Description

This Special Issue, consisting of 14 papers, presents the latest findings concerning both numerical and experimental investigations. Their aim is to achieve a reduction in pollutant emissions, as well as an improvement in fuel economy and performance, for internal combustion engines. This will provide readers with a comprehensive, unbiased, and scientifically sound overview of the most recent research and technological developments in this field. More specific topics include: 3D CFD detailed analysis of the fuel injection, combustion and exhaust aftertreatments processes, 1D and 0D, semi-empirical, neural network-based control-oriented models, experimental analysis and the optimization of both conventional and innovative combustion processes.




Assessment of Fuel Economy Technologies for Light-Duty Vehicles


Book Description

Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.




Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles


Book Description

The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.




Fuel Systems for IC Engines


Book Description

This book presents the papers from the latest conference in this successful series on fuel injection systems for internal combustion engines. It is vital for the automotive industry to continue to meet the demands of the modern environmental agenda. In order to excel, manufacturers must research and develop fuel systems that guarantee the best engine performance, ensuring minimal emissions and maximum profit. The papers from this unique conference focus on the latest technology for state-of-the-art system design, characterisation, measurement, and modelling, addressing all technological aspects of diesel and gasoline fuel injection systems. Topics range from fundamental fuel spray theory, component design, to effects on engine performance, fuel economy and emissions. - Presents the papers from the IMechE conference on fuel injection systems for internal combustion engines - Papers focus on the latest technology for state-of-the-art system design, characterisation, measurement and modelling; addressing all technological aspects of diesel and gasoline fuel injection systems - Topics range from fundamental fuel spray theory and component design to effects on engine performance, fuel economy and emissions




Internal Combustion Engines


Book Description

Internal Combustion Engines covers the trends in passenger car engine design and technology. This book is organized into seven chapters that focus on the importance of the in-cylinder fluid mechanics as the controlling parameter of combustion. After briefly dealing with a historical overview of the various phases of automotive industry, the book goes on discussing the underlying principles of operation of the gasoline, diesel, and turbocharged engines; the consequences in terms of performance, economy, and pollutant emission; and of the means available for further development and improvement. A chapter focuses on the automotive fuels of the various types of engines. Recent developments in both the experimental and computational fronts and the application of available research methods on engine design, as well as the trends in engine technology, are presented in the concluding chapters. This book is an ideal compact reference for automotive researchers and engineers and graduate engineering students.




Introduction to Modeling and Control of Internal Combustion Engine Systems


Book Description

Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.




Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles


Book Description

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.




Internal Combustion Engine Fundamentals


Book Description

This text, by a leading authority in the field, presents a fundamental and factual development of the science and engineering underlying the design of combustion engines and turbines. An extensive illustration program supports the concepts and theories discussed.




Internal Combustion Engine Handbook


Book Description

More than 120 authors from science and industry have documented this essential resource for students, practitioners, and professionals. Comprehensively covering the development of the internal combustion engine (ICE), the information presented captures expert knowledge and serves as an essential resource that illustrates the latest level of knowledge about engine development. Particular attention is paid toward the most up-to-date theory and practice addressing thermodynamic principles, engine components, fuels, and emissions. Details and data cover classification and characteristics of reciprocating engines, along with fundamentals about diesel and spark ignition internal combustion engines, including insightful perspectives about the history, components, and complexities of the present-day and future IC engines. Chapter highlights include: • Classification of reciprocating engines • Friction and Lubrication • Power, efficiency, fuel consumption • Sensors, actuators, and electronics • Cooling and emissions • Hybrid drive systems Nearly 1,800 illustrations and more than 1,300 bibliographic references provide added value to this extensive study. “Although a large number of technical books deal with certain aspects of the internal combustion engine, there has been no publication until now that covers all of the major aspects of diesel and SI engines.” Dr.-Ing. E. h. Richard van Basshuysen and Professor Dr.-Ing. Fred Schäfer, the editors, “Internal Combustion Engines Handbook: Basics, Components, Systems, and Perpsectives”