Functional Analysis: Surveys and Recent Results III


Book Description

This volume contains 22 articles on topics of current interest in functional analysis, operator theory and related areas. Some of the papers have connections with complex function theory in one and several variables, probability theory and mathematical physics.Surveys of some areas of recent progress in functional analysis are given and related new results are presented. The topics covered in this volume supplement the discussion of modern functional analysis in the previous Proceedings volumes. Together with the previous volumes, the reader obtains a good impression of many aspects of present-day functional analysis and its applications. Parts of this volume can be used profitably in advanced seminars and courses in functional analysis.







Introduction to Functional Analysis


Book Description

The book is written for students of mathematics and physics who have a basic knowledge of analysis and linear algebra. It can be used as a textbook for courses and/or seminars in functional analysis. Starting from metric spaces it proceeds quickly to the central results of the field, including the theorem of HahnBanach. The spaces (p Lp (X,(), C(X)' and Sobolov spaces are introduced. A chapter on spectral theory contains the Riesz theory of compact operators, basic facts on Banach and C*-algebras and the spectral representation for bounded normal and unbounded self-adjoint operators in Hilbert spaces. An introduction to locally convex spaces and their duality theory provides the basis for a comprehensive treatment of Fr--eacute--;chet spaces and their duals. In particular recent results on sequences spaces, linear topological invariants and short exact sequences of Fr--eacute--;chet spaces and the splitting of such sequences are presented. These results are not contained in any other book in this field.




Convergence Structures and Applications to Functional Analysis


Book Description

This text offers a rigorous introduction into the theory and methods of convergence spaces and gives concrete applications to the problems of functional analysis. While there are a few books dealing with convergence spaces and a great many on functional analysis, there are none with this particular focus. The book demonstrates the applicability of convergence structures to functional analysis. Highlighted here is the role of continuous convergence, a convergence structure particularly appropriate to function spaces. It is shown to provide an excellent dual structure for both topological groups and topological vector spaces. Readers will find the text rich in examples. Of interest, as well, are the many filter and ultrafilter proofs which often provide a fresh perspective on a well-known result. Audience: This text will be of interest to researchers in functional analysis, analysis and topology as well as anyone already working with convergence spaces. It is appropriate for senior undergraduate or graduate level students with some background in analysis and topology.




Progress in Functional Analysis


Book Description

This volume includes a collection of research articles inFunctional Analysis, celebrating the occasion of Manuel Valdivia'ssixtieth birthday. The papers included in the volume are basedon the main lectures presented during the internationalfunctional analysis meeting held in Peñíscola(Valencia, Spain) in October 1990.During his career, Valdiviahas made contributions to a wide variety of areas of FunctionalAnalysis and his work has had a profound impact. A thoroughappreciation of Valdivia's work is presented in J.Horváth's article. In honor of Valdivia's achievements, this volume presents more than twenty-five papers on topics related to his research(Banach spaces, operator ideals, tensor products, Fréchet,(DF) and (LF) spaces, distribution theory, infinite holomorphyetc.). While the majority of papers are research articles, survey articles are also included. The book covers a broad spectrum of interests in today's Functional Analysis and presents new results by leading specialists in the field.




Functional Analysis


Book Description

These proceedings from the Symposium on Functional Analysis explore advances in the usually separate areas of semigroups of operators and evolution equations, geometry of Banach spaces and operator ideals, and Frechet spaces with applications in partial differential equations.




Descriptive Topology in Selected Topics of Functional Analysis


Book Description

"Descriptive Topology in Selected Topics of Functional Analysis" is a collection of recent developments in the field of descriptive topology, specifically focused on the classes of infinite-dimensional topological vector spaces that appear in functional analysis. Such spaces include Fréchet spaces, (LF)-spaces and their duals, and the space of continuous real-valued functions C(X) on a completely regular Hausdorff space X, to name a few. These vector spaces appear in functional analysis in distribution theory, differential equations, complex analysis, and various other analytical settings. This monograph provides new insights into the connections between the topological properties of linear function spaces and their applications in functional analysis.







Fluctuations in Markov Processes


Book Description

The present volume contains the most advanced theories on the martingale approach to central limit theorems. Using the time symmetry properties of the Markov processes, the book develops the techniques that allow us to deal with infinite dimensional models that appear in statistical mechanics and engineering (interacting particle systems, homogenization in random environments, and diffusion in turbulent flows, to mention just a few applications). The first part contains a detailed exposition of the method, and can be used as a text for graduate courses. The second concerns application to exclusion processes, in which the duality methods are fully exploited. The third part is about the homogenization of diffusions in random fields, including passive tracers in turbulent flows (including the superdiffusive behavior). There are no other books in the mathematical literature that deal with this kind of approach to the problem of the central limit theorem. Hence, this volume meets the demand for a monograph on this powerful approach, now widely used in many areas of probability and mathematical physics. The book also covers the connections with and application to hydrodynamic limits and homogenization theory, so besides probability researchers it will also be of interest also to mathematical physicists and analysts.