Advances in Animal Genomics


Book Description

Advances in Animal Genomics provides an outstanding collection of integrated strategies involving traditional and modern - omics (structural, functional, comparative and epigenomics) approaches and genomics-assisted breeding methods which animal biotechnologists can utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in livestock. Written by international experts on animal genomics, this book explores the recent advances in high-throughput, next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches which have enabled to produce huge genomic and transcriptomic resources globally on a genome-wide scale. This book is an important resource for researchers, students, educators and professionals in agriculture, veterinary and biotechnology sciences that enables them to solve problems regarding sustainable development with the help of current innovative biotechnologies. - Integrates basic and advanced concepts of animal biotechnology and presents future developments - Describes current high-throughput next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches for sustainable livestock production - Illustrates integrated strategies to dissect and decode the molecular and gene regulatory networks involved in complex quantitative yield and stress tolerance traits in livestock - Ensures readers will gain a strong grasp of biotechnology for sustainable livestock production with its well-illustrated discussion







Exploring Horizons for Domestic Animal Genomics


Book Description

Recognizing the important contributions that genomic analysis can make to agriculture, production and companion animal science, evolutionary biology, and human health with respect to the creation of models for genetic disorders, the National Academies convened a group of individuals to plan a public workshop that would: (1) assess these contributions; (2) identify potential research directions for existing genomics programs; and (3) highlight the opportunities of a coordinated, multi-species genomics effort for the science and policymaking communities. Their efforts culminated in a workshop sponsored by the U.S. Department of Agriculture, Department of Energy, National Science Foundation, and the National Institutes of Health. The workshop was convened on February 19, 2002. The goal of the workshop was to focus on domestic animal genomics and its integration with other genomics and functional genomics projects.







Integrative Genomics and Network Biology in Livestock and other Domestic Animals


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Advances in Farm Animal Genomic Resources


Book Description

The history of livestock started with the domestication of their wild ancestors: a restricted number of species allowed to be tamed and entered a symbiotic relationship with humans. In exchange for food, shelter and protection, they provided us with meat, eggs, hides, wool and draught power, thus contributing considerably to our economic and cultural development. Depending on the species, domestication took place in different areas and periods. After domestication, livestock spread over all inhabited regions of the earth, accompanying human migrations and becoming also trade objects. This required an adaptation to different climates and varying styles of husbandry and resulted in an enormous phenotypic diversity. Approximately 200 years ago, the situation started to change with the rise of the concept of breed. Animals were selected for the same visible characteristics, and crossing with different phenotypes was reduced. This resulted in the formation of different breeds, mostly genetically isolated from other populations. A few decades ago, selection pressure was increased again with intensive production focusing on a limited range of types and a subsequent loss of genetic diversity. For short-term economic reasons, farmers have abandoned traditional breeds. As a consequence, during the 20th century, at least 28% of farm animal breeds became extinct, rare or endangered. The situation is alarming in developing countries, where native breeds adapted to local environments and diseases are being replaced by industrial breeds. In the most marginal areas, farm animals are considered to be essential for viable land use and, in the developing world, a major pathway out of poverty. Historic documentation from the period before the breed formation is scarce. Thus, reconstruction of the history of livestock populations depends on archaeological, archeo-zoological and DNA analysis of extant populations. Scientific research into genetic diversity takes advantage of the rapid advances in molecular genetics. Studies of mitochondrial DNA, microsatellite DNA profiling and Y-chromosomes have revealed details on the process of domestication, on the diversity retained by breeds and on relationships between breeds. However, we only see a small part of the genetic information and the advent of new technologies is most timely in order to answer many essential questions. High-throughput single-nucleotide polymorphism genotyping is about to be available for all major farm animal species. The recent development of sequencing techniques calls for new methods of data management and analysis and for new ideas for the extraction of information. To make sense of this information in practical conditions, integration of geo-environmental and socio-economic data are key elements. The study and management of farm animal genomic resources (FAnGR) is indeed a major multidisciplinary issue. The goal of the present Research Topic was to collect contributions of high scientific quality relevant to biodiversity management, and applying new methods to either new genomic and bioinformatics approaches for characterization of FAnGR, to the development of FAnGR conservation methods applied ex-situ and in-situ, to socio-economic aspects of FAnGR conservation, to transfer of lessons between wildlife and livestock biodiversity conservation, and to the contribution of FAnGR to a transition in agriculture (FAnGR and agro-ecology).




Animal Breeding and Genetics


Book Description

This newly updated and revised volume of the Encyclopedia of Sustainability Science and Technology (ESST) details the role of Animal Breeding and Genetics in the sustainability of animal agriculture. The volume covers scientific principles and applications includes the current science used to advance cattle, poultry, swine,sheep, and equine populations, as well as the future role of techniques such as gene editing. International leaders in the field explain foundational concepts such as heritability, the covariance between relatives, statistical approaches to predicting the genetic merit of individuals, and the development and advancement of molecular techniques to elucidate changes in the DNA sequence that underly phenotypic variation. The use of genetic-based tools to improve animal agriculture and meet consumer demands across species is treated in detail. Readers will gain an understanding of how global livestock producers have implemented advanced genetic selection tools and used them to improve reproduction, production, efficiency, health, and sustainability. The interactions of genetics and production environments, and the genetic components of the complex interactions among animals are also discussed. The future of Animal Breeding and Genetics, including the challenges and opportunities that exist in feeding a growing world population, are addressed.




Systems Biology, Bioinformatics and Livestock Science


Book Description

This book explores the intricate world of livestock sciences and production through the lens of systems biology. Offering a comprehensive exploration of both fundamental and advanced aspects, it unearths the potential of systems biology in the realm of livestock. The book presents 13 edited chapters on cutting-edge knowledge about systems biology and omics technology, showcasing genomics, transcriptomics, proteomics, metabolomics, and more. It illuminates the role of systems biology in livestock and disease management. Readers will learn about power of technologies that merge computational biology, nanobiotechnology, artificial intelligence, and single-cell sequencing. Each chapter is written by scientific experts and includes references for further reading. The book covers 4 key themes: Introduction to Systems Biology in Livestock Science: Uncover the foundation of integrating systems biology with omics data for animal scientists. Multi-scale Modeling Techniques: Explore how multi-scale modeling is shaping the future of system biology. Livestock Viral Diseases: Gain insights into how systems biology is revolutionizing our understanding of livestock viral diseases. Single Cell RNA-Sequencing: Understand the potential of this advanced technique in studying livestock animals at a cellular level. This book is a timely resource for students and researchers, offering a pathway to comprehend the crucial role systems biology plays in sustainable livestock production and management.




Animal Genomics for Animal Health


Book Description

"It includes a review of the state of the art in animal genomics and its applications to animal health. The contributions describe the new tools available, such as HapMaps for chicken and cattle, and show how the understanding of gene structure and function can be successfully applied to delineate the molecular mechanisms of disease and determine complex phenotypes associated with health traits. A critical evaluation of future needs and future applications of animal genomics is also presented. The integration of animal genomics in animal health research is likely to revolutionize the way scientists approach the challenges of discovering highly effective drugs and vaccines for animal diseases."--BOOK JACKET.




Genetic Susceptibility to Infectious Diseases


Book Description

Infectious diseases are commonly regarded as a distinct category, with different causes and patterns than chronic or genetic disease. But in fact there are many varieties of genetic susceptibility to infection, the subject of this book, which will be divided into three sections: 1) concepts and methods, 2) genes and pathophysiologic mechanisms, and 3) infectious agents and diseases. No currently plubished text on either genetics or infectious diseases focuses on the genetic aspects of the special relationship between host and pathogen in the way envisioned for Section 1. No other work on the selected genes regulating immunity deals as systematically with the sequence variation/function relationships most pertinent to infection as planned for Section 2. And no other book gives as meaningful a picture of how these genes operate in infectious disease as Section 3 will.