Functional Biology of Clonal Animals


Book Description

Clonal animals, that is those that are genetically identical, are of great importance in biology. The supposed evolutionary advantages of sexual versus asexual reproduction are one of the central paradoxes of current evolutionary theory. The evolved strategy of asexual reproduction includes a large number of diverse species in many different groups, for example aphids, guppies, planktonic rotifers and others.







Ecology and Evolutionary Biology of Clonal Plants


Book Description

Proceedings of Clone 2000, an International Workshop held in Obergurgl, Austria, 20-25 August 2000




Clonal Growth in Plants


Book Description







Scientific and Medical Aspects of Human Reproductive Cloning


Book Description

Human reproductive cloning is an assisted reproductive technology that would be carried out with the goal of creating a newborn genetically identical to another human being. It is currently the subject of much debate around the world, involving a variety of ethical, religious, societal, scientific, and medical issues. Scientific and Medical Aspects of Human Reproductive Cloning considers the scientific and medical sides of this issue, plus ethical issues that pertain to human-subjects research. Based on experience with reproductive cloning in animals, the report concludes that human reproductive cloning would be dangerous for the woman, fetus, and newborn, and is likely to fail. The study panel did not address the issue of whether human reproductive cloning, even if it were found to be medically safe, would beâ€"or would not beâ€"acceptable to individuals or society.




A Functional Biology of Sea Anemones


Book Description

General Editor: Peter Calow, Department of Zoology, University of Sheffield, England The main aim of this series will be to illustrate and to explain the way organisms 'make a living' in nature. At the heart of this - their Junctional biology - is the way organisms acquire and then make use of resources in metabolism, movement, growth, reproduction, and so on. These processes will form the fundamental framework of all the books in the series. Each book will concentrate on a particular taxon (species, family, class or even phylum) and will bring together information on the form, physiology, ecology and evolutionary biology of the group. The aim will be not only to describe how organisms work, but also to consider why they have come to work in that way. By concentrating on taxa which are well known, it is hoped that the series will not only illustrate the success of selection, but also show the constraints imposed upon it by the physiological, morphological and developmental limitations of the groups. Another important feature of the series will be its organismic orientation. Each book will emphasize the importance of functional integration in the day-to-day lives and the evolution of organisms. This is crucial since, though it may be true that organisms can be considered as collections of gene determined traits, they nevertheless interact with their environment as integrated wholes and it is in this context that individual traits have been subjected to natural selection and have evolved.




Scientific Frontiers in Developmental Toxicology and Risk Assessment


Book Description

Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.




A Functional Biology of Parasitism


Book Description

Series Editor: Peter Calow, Department of Zoology, University of Sheffield, England The main aim of this series will be to illustrate and to explain the way organisms 'make a living' in nature. At the heart of this - their functional biology - is the way organisms acquire and then make use of resources in metabolism, movement, growth, reproduction, and so on. These processes will form the fundamental framework of all the books in the series. Each book will concentrate on a particular taxon (species, family, class or even phylum) and will bring together information on the form, physiology, ecology and evolutionary biology of the group. The aim will be not only to describe how organisms work, but also to consider why they have come to work in that way. By concentration on taxa which are well known, it is hoped that the series will not only illustrate the success of selection, but also show the constraints imposed upon it by the physiological, morphological and developmental limitations of the groups. Another important feature of the series will be its organismic orientation. Each book will emphasize the importance of functional integration in the day to-day lives and the evolution of organisms. This is crucial since, though it may be true that organisms can be considered as collections of gene determined traits, they nevertheless interact with their environment as integrated wholes and it is in this context that individual traits have been subjected to natural selection and have evolved.




Genetics and Evolution of Aquatic Organisms


Book Description

This volume brings together, for the first time, a wide range of up-to-the-minute and traditional techniques and approaches to the study of genetics of organisms living in freshwater or marine habitats. Carefully edited chapters are headed by broad review articles against which are set a number of more specific experience papers which demonstrate the breadth and range of approaches currently being undertaken.