Functional Brain Imaging


Book Description

Functional Brain Imaging




Clinical Functional MRI


Book Description

The second, revised edition of this successful textbook provides an up-to-date description of the use of preoperative fMRI in patients with brain tumors and epilepsies. State of the art fMRI procedures are presented, with detailed consideration of practical aspects, imaging and data processing, normal and pathological findings, and diagnostic possibilities and limitations. Relevant information on brain physiology, functional neuroanatomy, imaging technique, and methodology is provided by recognized experts in these fields. Compared with the first edition, chapters have been updated to reflect the latest developments and in particular the current use of diffusion tensor imaging (DTI) and resting-state fMRI. Entirely new chapters are included on resting-state presurgical fMRI and the role of DTI and tractography in brain tumor surgery. Further chapters address multimodality functional neuroimaging, brain plasticity, and pitfalls, tips, and tricks.




Handbook of Functional Neuroimaging of Cognition, second edition


Book Description

A new edition of the essential resource on using functional neuroimaging techniques to study the neural basis of cognition, revised with the student in mind; thoroughly updated, with new chapters on fMRI physics, skill learning, emotion and social cognition, and other topics. This essential resource on neuroimaging provides an accessible and user-friendly introduction to the field written by leading researchers. The book describes theoretical and methodological developments in the use of functional neuroimaging techniques to study the neural basis of cognition, from early scientific efforts to link brain and behavior to the latest applications of fMRI and PET methods. The core of the book covers fMRI and PET studies in specific domains: attention, skill learning, semantic memory, language, episodic memory, working memory, and executive functions. By introducing a technique within the description of a domain, the book offers a clear explanation of the process while highlighting its biological context. The emphasis on readability makes Handbook of Functional Neuroimaging of Cognition ideal for classroom use in advanced undergraduate and graduate courses in cognitive neuroscience. This second edition has been completely updated to reflect new developments in the field, with existing chapters rewritten and new chapters added to each section. The section on history and methods now includes a chapter on the crucial topic of the physics of functional neuroimaging; the chapters on skill learning and executive functions are new to the domain section; and chapters on childhood development and emotion and social cognition have been added to the section on developmental, social, and clinical applications. The color insert has been increased in size, enhancing the visual display of representative findings. Contributors Todd S. Braver, Jeffrey Browndyke, Roberto Cabeza, B.J. Casey, Jody Culham, Clayton E. Curtis, Mark D'Esposito, Sander Daselaar, Lila Davachi, Ian Dobbins, Karl J. Friston, Barry Giesbrecht, Todd C. Handy, Joseph B. Hopfinger, Scott A. Huettel, Irene P. Kan, Alan Kingstone, Eleni Kotsoni, Kevin S. LaBar, George R. Mangun, Gregory McCarthy, Uta Noppeney, Robyn T. Oliver, Elizabeth A. Phelps, Russel A. Poldrack, Cathy J. Price, Marcus E. Raichle, Hannes Ruge, Gaia Scerif, Allen W. Song, Sharon L. Thompson-Schill, Daniel T. Willingham, Richard J.S. Wise




In Vivo Optical Imaging of Brain Function, Second Edition


Book Description

These are exciting times for the field of optical imaging of brain function. Rapid developments in theory and technology continue to considerably advance understanding of brain function. Reflecting changes in the field during the past five years, the second edition of In Vivo Optical Imaging of Brain Function describes state-of-the-art techniques and their applications for the growing field of functional imaging in the live brain using optical imaging techniques. New in the Second Edition: Voltage-sensitive dyes imaging in awake behaving animals Imaging based on genetically encoded probes Imaging of mitochondrial auto-fluorescence as a tool for cortical mapping Using pH-sensitive dyes for functional mapping Modulated imaging Calcium imaging of neuronal activity using 2-photon microscopy Fourier approach to optical imaging Fully updated chapters from the first edition Leading Authorities Explore the Latest Techniques Updated to reflect continuous development in this emerging research area, this new edition, as with the original, reaches across disciplines to review a variety of non-invasive optical techniques used to study activity in the living brain. Leading authorities from such diverse areas as biophysics, neuroscience, and cognitive science present a host of perspectives that range from a single neuron to large assemblies of millions of neurons, captured at various temporal and spatial resolutions. Introducing techniques that were not available just a few years ago, the authors describe the theory, setup, analytical methods, and examples that highlight the advantages of each particular method.




fMRI: From Nuclear Spins to Brain Functions


Book Description

This volume explores the revolutionary fMRI field from basic principles to state-of-the-art research. It covers a broad spectrum of topics, including the history of fMRI's development using endogenous MR blood contrast, neurovascular coupling, pulse sequences for fMRI, quantitative fMRI; fMRI of the visual system, auditory cortex, and sensorimotor system; genetic imaging using fMRI, multimodal neuroimaging, brain bioenergetics and function and molecular-level fMRI. Comprehensive and intuitively structured, this book engages the reader with a first-person account of the development and history of the fMRI field by the authors. The subsequent sections examine the physiological basis of fMRI, the basic principles of fMRI and its applications and the latest advances of the technology, ending with a discussion of fMRI’s future. fMRI: From Nuclear Spins to Brain Function, co-edited by leading and renowned fMRI researchers Kamil Ugurbil, Kamil Uludag and Lawrence Berliner, is an ideal resource for clinicians and researchers in the fields of neuroscience, psychology and MRI physics.




Quantitative Functional Brain Imaging with Positron Emission Tomography


Book Description

This book presents the latest scientific developments in the field of positron emission tomography (PET) dealing with data acquisition, image processing, applications, statistical analysis, tracer development, parameter estimation, and kinetic modeling. It covers improved methodology and the application of existing techniques to new areas. The text also describes new approaches in scanner design and image processing, and the latest techniques for modeling and statistical analyses. This volume will be a useful reference for the active brain PET scientist, as well as a valuable introduction for students and researchers who wish to take advantage of the capabilities of PET to study the normal and diseased brain. - Authored by international authorities in PET - Provides the latest up-to-date techniques and applications - Covers all fundamental disciplines of PET in one volume - A comprehensive resource for students, clinicians, and new PET researchers




Functional MRI


Book Description

Functional MRI: Basic Principles and Emerging Clinical Applications provides an overview of the basic principles of fMRI for clinicians with minimal knowledge of the imaging technique and its research potential and clinical applications. The text is divided into two parts, with Section I covering the primary signal measured in fMRI (BOLD), the correlation between neuronal activity and the BOLD signal, and how the data is analyzed and interpreted in fMRI. Section II explores applications of fMRI in cognitive neuroscience and common psychiatric disorders, surgical planning in neurosurgery, anesthesia and the intensive care unit, and more. Timely and highly accessible, this book is a valuable resource for researchers and clinicians interested in understanding what fMRI is, how it works, and its applications.




When I'm 64


Book Description

By 2030 there will be about 70 million people in the United States who are older than 64. Approximately 26 percent of these will be racial and ethnic minorities. Overall, the older population will be more diverse and better educated than their earlier cohorts. The range of late-life outcomes is very dramatic with old age being a significantly different experience for financially secure and well-educated people than for poor and uneducated people. The early mission of behavioral science research focused on identifying problems of older adults, such as isolation, caregiving, and dementia. Today, the field of gerontology is more interdisciplinary. When I'm 64 examines how individual and social behavior play a role in understanding diverse outcomes in old age. It also explores the implications of an aging workforce on the economy. The book recommends that the National Institute on Aging focus its research support in social, personality, and life-span psychology in four areas: motivation and behavioral change; socioemotional influences on decision-making; the influence of social engagement on cognition; and the effects of stereotypes on self and others. When I'm 64 is a useful resource for policymakers, researchers and medical professionals.




Functional Brain Mapping: Methods and Aims


Book Description

This book provides an essential overview of the broad range of functional brain imaging techniques, as well as neuroscientific methods suitable for various scientific tasks in fundamental and clinical neuroscience. It also shares information on novel methods in computational neuroscience, mathematical algorithms, image processing, and applications to neuroscience. The mammalian brain is a huge and complex network that consists of billions of neural and glial cells. Decoding how information is represented and processed by this neural network requires the ability to monitor the dynamics of large numbers of neurons at high temporal and spatial resolution over a large part of the brain. Functional brain optical imaging has seen more than thirty years of intensive development. Current light-using methods provide good sensitivity to functional changes through intrinsic contrast and are rapidly exploiting the growing availability of exogenous fluorescence probes. In addition, various types of functional brain optical imaging are now being used to reveal the brain’s microanatomy and physiology.




Introduction to Functional Magnetic Resonance Imaging


Book Description

Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.