Functional Materials for Solid Oxide Fuel Cells: Processing, Microstructure and Performance


Book Description

Frontiers in Ceramic Science highlights the importance of ceramics and their applications in different fields such as manufacturing, construction, engineering, energy and much more. Each volume of the series brings a themed focus on a specific topic with contributions from experts around the world. The series is essential reading for materials science researchers interested in current developments in ceramic manufacturing and applications. Solid Oxide Fuel Cells (SOFCs) have received great attention among researchers in the past few decades due to their high electrochemical energy conversion efficiency, environmental friendliness, fuel flexibility and wide range of applications. This volume is a contribution from renowned researchers in the scientific community interested in functional materials for SOFCs. Chapters in this volume emphasize the processing, microstructure and performance of electrolyte and electrode materials. Contributors review the main chemical and physical routes used to prepare ceramic/composite materials, and explain a variety of manufacturing techniques for electrode and electrolyte production and characterization. Readers will also find information about both symmetrical and single fuel cells. The book is a useful reference for students and professionals involved in SOFC research and development.




Functional Materials for Solid Oxide Fuel Cells


Book Description

Solid Oxide Fuel Cells (SOFCs) have received great attention among researchers in the past few decades due to their high electrochemical energy conversion efficiency, environmental friendliness, fuel flexibility and wide range of applications. This volume is a contribution from renowned researchers in the scientific community interested in functional materials for SOFCs. Chapters in this volume emphasize the processing, microstructure and performance of electrolyte and electrode materials. Contributors review the main chemical and physical routes used to prepare ceramic/composite materials, and explain a variety of manufacturing techniques for electrode and electrolyte production and characterization. Readers will also find information about both symmetrical and single fuel cells. The book is a useful reference for students and professionals involved in SOFC research and development.




Solid Oxide Fuel Cells


Book Description

The First Book Centered on Materials Issues of SOFCsAlthough the high operating temperature of solid oxide fuel cells (SOFCs) creates opportunities for using a variety of fuels, including low-grade hydrogen and those derived from biomass, it also produces difficulties in materials performance and often leads to materials degradation during operatio




Liquid Biofuels: Bioethanol


Book Description

This book covers the present and future of bioethanol biorefinery technologies. It discusses the efficient use of feedstock in bioethanol production, and critically reviews the environmental sustainability of bioethanol production. In addition, it describes the integrated production of bioelectricity, biopolymers, organic acids, and other biomolecules, as well as the use of process-related liquid and solid byproducts and/or wastes during bioethanol generation. Since the bioethanol industry has also led the automotive industry to explore new avenues, this book summarizes the various aspects of ethanol motorization, hybrid engine development, and biofuel electrification. For decades, clean and renewable alternatives have been sought to reduce dependence on petroleum-based fossil fuels and CO2 emissions. Bioethanol appears as one of the best solutions for the production of biofuels, bioenergy and biochemicals, along with the establishment of new biorefinery concepts and a circular bioeconomy. Therefore, the ideas and technologies presented in this book contribute to the UN Sustainable Development Goal 7: Affordable and Clean Energy. This book is a useful reference for postgraduate students and researchers interested in biorefinery and biofuel technologies, both in academia- and commercial laboratories. Early career scientists can use it to fast track into the field. Advanced scientists will find it helpful to gain a broader overview of the field beyond their area of specialization.




Catalytic Materials for Hydrogen Production and Electro-oxidation Reactions


Book Description

The implementation of hydrogen production processes on an industrial scale requires a comprehensive understanding of the chemical proprieties of catalytic materials and the applications such materials in electrocatalysis. This volume presents information about catalytic materials for hydrogen production and hydrogen valorization in electro-oxidation reactions. Chapters emphasize on materials for classical steam, CO2 sorption enhanced steam reforming and dry reforming for hydrogen production. The hydrogen electro-oxidation reaction in anodes of Solid Oxide Fuel Cells (SOFCs) is also explained. Chapters have been contributed by experts in industrial chemistry, adding a valuable perspective for readers. This volume is essential to chemical engineering researchers and industrial professionals interested in hydrogen production systems and the science behind the materials driving the reactions in key processes.




High Temperature Corrosion


Book Description

Reviews the science and engineering of high-temperature corrosion and provides guidelines for selecting the best materials for an array of system processes High-temperature corrosion (HTC) is a widespread problem in an array of industries, including power generation, aerospace, automotive, and mineral and chemical processing, to name a few. This book provides engineers, physicists, and chemists with a balanced presentation of all relevant basic science and engineering aspects of high-temperature corrosion. It covers most HTC types, including oxidation, sulfidation, nitridation, molten salts, fuel-ash corrosion, H2S/H2 corrosion, molten fluoride/HF corrosion, and carburization. It also provides corrosion data essential for making the appropriate choices of candidate materials for high-temperature service in process conditions. A form of corrosion that does not require the presence of liquids, high-temperature corrosion occurs due to the interaction at high temperatures of gases, liquids, or solids with materials. HTC is a subject is of increasing importance in many areas of science and engineering, and students, researchers, and engineers need to be aware of the nature of the processes that occur in high-temperature materials and equipment in common use today, especially in the chemical, gas, petroleum, electric power, metal manufacturing, automotive, and nuclear industries. Provides engineers and scientists with the essential data needed to make the most informed decisions on materials selection Includes up-to-date information accompanied by more than 1,000 references, 80% of which from within the past fifteen years Includes details on systems of critical engineering importance, especially the corrosion induced by low-energy radionuclides Includes practical guidelines for testing and research in HTC, along with both the European and International Standards for high-temperature corrosion engineering Offering balanced, in-depth coverage of the fundamental science behind and engineering of HTC, High Temperature Corrosion: Fundamentals and Engineering is a valuable resource for academic researchers, students, and professionals in the material sciences, solid state physics, solid state chemistry, electrochemistry, metallurgy, and mechanical, chemical, and structural engineers.




Solid Oxide Fuel Cells 12 (SOFC-XII)


Book Description

This issue of ECS Transactions contains papers from the Twelfth International Symposium on Solid Oxide Fuel Cells (SOFC-XII),a continuing biennial series of symposia. The papers deal with materials for cell components and fabrication methods for components and complete cells. Also contained are papers on cell electrochemical performance and its modelling, stacks and systems, and prototype testing of SOFC demonstration units for different applications.




High-Temperature Solid Oxide Fuel Cells for the 21st Century


Book Description

High-temperature Solid Oxide Fuel Cells, Second Edition, explores the growing interest in fuel cells as a sustainable source of energy. The text brings the topic of green energy front and center, illustrating the need for new books that provide comprehensive and practical information on specific types of fuel cells and their applications. This landmark volume on solid oxide fuel cells contains contributions from experts of international repute, and provides a single source of the latest knowledge on this topic. - A single source for all the latest information on solid oxide fuel cells and their applications - Illustrates the need for new, more comprehensive books and study on the topic - Explores the growing interest in fuel cells as viable, sustainable sources of energy




Heterogeneous Catalysis


Book Description

Heterogeneous Catalysis: Materials and Applications focuses on heterogeneous catalysis applied to the elimination of atmospheric pollutants as an alternative solution for producing clean energy and the valorization of chemical products. The book helps users understand the properties of catalytic materials and catalysis phenomena governing electrocatalytic/catalytic reactions, and – more specifically – the study of surface and interface chemistry. By clustering knowledge in these fields, the book makes information available to both the academic and industrial communities. Further, it shows how heterogeneous catalysis applications can be used to solve environmental problems and convert energy through electrocatalytic reactions and chemical valorization. Sections cover nanomaterials for heterogeneous catalysis, heterogeneous catalysis mechanisms, SOX adsorption, greenhouse gases conversion, reforming reactions for hydrogen production, valorization of hydrogen energy, energy conversion and biomass valorization. - Addresses topics of increasing interest to society such as the valorization of biomass, the use of polluting gases to produce value-added products, and the optimization of catalytic materials for water splitting, fuel cells, and other devices - Discusses pollutant adsorption by industrial fume desulphurization processes - Helps improve processes for obtaining chemicals using nonconventional technologies




Solid Oxide Fuel Cell Technology


Book Description

High temperature solid oxide fuel cell (SOFC) technology is a promising power generation option that features high electrical efficiency and low emissions of environmentally polluting gases such as CO2, NOox and SOx. It is ideal for distributed stationary power generation applications where both high-efficiency electricity and high-quality heat are in strong demand. For the past few decades, SOFC technology has attracted intense worldwide R&D effort and, along with polymer electrolyte membrane fuel cell (PEMFC) technology, has undergone extensive commercialization development.This book presents a systematic and in-depth narrative of the technology from the perspective of fundamentals, providing comprehensive theoretical analysis and innovative characterization techniques for SOFC technology. The book initially deals with the basics and development of SOFC technology from cell materials to fundamental thermodynamics, electronic properties of solids and charged particle transport. This coverage is extended with a thorough analysis of such operational features as current flow and energy balance, and on to voltage losses and electrical efficiency. Furthermore, the book also covers the important issues of fuel cell stability and durability with chapters on performance characterization, fuel processing, and electrode poisoning. Finally, the book provides a comprehensive review for SOFC materials and fabrication techniques. A series of useful scientific appendices rounds off the book.Solid oxide fuel cell technology is a standard reference for all those researching this important field as well as those working in the power industry. - Provides a comprehensive review of solid oxide fuel cells from history and design to chemistry and materials development - Presents analysis of operational features including current flow, energy balance, voltage losses and electrical efficiency - Explores fuel cell stability and durability with specific chapters examining performance characterization, fuel processing and electrode poisoning