Functional Molecular Nanostructures


Book Description

With contributions by numerous experts







Nanostructures


Book Description

Nanostructures covers the main concepts and fundamentals of nanoscience emphasizing characteristics and properties of numerous nanostructures. This book offers a clear explanation of nanostructured materials via several examples of synthesis/processing methodologies and materials characterization. In particular, this book is targeted to a range of scientific backgrounds, with some chapters written at an introductory level and others with the in-depth coverage required for a seasoned professional. Nanostructures is an important reference source for early-career researchers and practicing materials scientists and engineers seeking a focused overview of the science of nanostructures and nanostructured systems, and their industrial applications. - Presents an accessible overview of the science behind, and industrial uses of, nanostructures. Gives materials scientists and engineers an understanding of how using nanostructures may increase material performance - Targeted to a wide audience, including graduate and postgraduate study with a didactic approach to aid fluid learning - Features an analysis of different nanostructured systems, explaining their properties and industrial applications




Nanostructures for Novel Therapy


Book Description

Nanostructures for Novel Therapy: Synthesis, Characterization and Applications focuses on the fabrication and characterization of therapeutic nanostructures, in particular, synthesis, design, and in vitro and in vivo therapeutic evaluation. The chapters provide a cogent overview of recent therapeutic applications of nanostructured materials that includes applications of nanostructured materials for wound healing in plastic surgery and stem cell therapy. The book explores the promise for more effective therapy through the use of nanostructured materials, while also assessing the challenges their use might pose from both an economic and medicinal point of view. This innovative look at how nanostructured materials are used in therapeutics will be of great benefit to researchers, providing a greater understanding of the different ways nanomaterials could improve medical treatment, along with a discussion of the obstacles that need to be overcome in order to guarantee widespread availability. - Outlines how the characteristics of nanostructures made from different materials gives particular properties that can be successfully used in therapeutics - Compares the properties of different nanostructures, allowing medicinal chemists and engineers to select which are most appropriate for their needs - Highlights new uses of nanostructures within the therapeutic field, enabling the discovery of new, more effective drugs




Functional Phthalocyanine Molecular Materials


Book Description

Phthalocyanines exhibit intriguing physic-chemical properties that render them important as a class of molecular functional materials. In addition to their traditional applications as dyes and pigments, more recently their use as the organic semiconductors, photodynamic therapy medicines, non-linear optical materials, catalysts for the photo oxidation, optical recording materials, and gas sensors attracts great research interests in these tetrapyrrole species.




Nanostructures for the Engineering of Cells, Tissues and Organs


Book Description

Nanostructures for the Engineering of Cells: Tissues and Organs showcases recent advances in pharmaceutical nanotechnology, with particular emphasis on tissue engineering, organ and cell applications. The book provides an up-to-date overview of organ targeting and cell targeting using nanotechnology. In addition, tissue engineering applications, such as skin regeneration are also discussed. Written by a diverse range of international academics, this book is a valuable research resource for researchers working in the biomaterials, medical and pharmaceutical industries. - Explains how nanomaterials regulate different cell behavior and function as a carrier for different biomolecules - Shows how nanobiomaterials and nanobiodevices are used in a range of treatment areas, such as skin tissue, wound healing and bone regeneration - Discusses nanomaterial preparation strategies for pharmaceutical application and regenerative medicine




Design of Nanostructures for Theranostics Applications


Book Description

Design of Nanostructures for Theranostics Applications focuses on the theranostics applications of nanostructures. In particular, multifunctional nanoparticles for diagnostics and treatment of different diseases, including those relating to the blood-brain barrier, are discussed in detail. Chapters explore different type of nanostructures, covering design, fabrication, functionalization and optimization, helping readers obtain the desired properties. Written by a diverse range of international academics, this book is a valuable reference resource for those working in both nanoscience and the pharmaceutical industry. - Explores how the design of a range of nanomaterials make them effective theranostic agents, including multifunctional core-shell nanostructures, mesoporous silica nanoparticles, and quantum dots - Shows how nanomaterials are used effectively for a range of diseases, including breast cancer, prostate cancer and neurological disorders - Assesses the pros and cons of using different nanomaterials for different types of treatment




CFN Lectures on Functional Nanostructures


Book Description

This book contains a selection of lectures from the first Summer School organized by the Center for Functional nanostructures (CFN) at the University of Karlsruhe. The mission of the CFN is to carry out research in the following areas: nanophotonics, nanoelectronics, molecular nanostructures and nanostructured materials. The aim of the summer schools is mainly to exchange new ideas and illustrate emerging research methodologies through a series of lectures. This is reflected by both the selection of topics addressed in the present volume as well as the tutorial aspect of the contributions.




Molecular Nanoelectronics


Book Description

And Perspective 225 -- Acknowledgments 225 -- R eferences 225 -- Chapter 9. NANOPARTICLES: BUILDING BLOCKS -- For Functional Nanostructures -- Corey Radloff, Cristin E. Moran, Joseph B. Jackson, Naomi J Halas -- 1. Introduction 229 -- 2. Building Blocks 230 -- 2.1. Nonmetallic Nanoparticles 230 -- 2.2. Semiconductor Nanocrystals 235 -- 2.3. M etal N anoparticles 241 -- 3. Assembly and Deposition Methods 244 -- 3.1. N anoshells 244 -- 3.2. Two- and Three-Dimensional Nanoparticle Assemblies 247 -- 3.3. Single-Particle Trapping and Manipulation 256 -- 4. A pplications 258 -- 4.1. Quantum Dot Corporation 258 -- 4.2. Nanospectra L.L.P 258 -- 4.3. SurroMed Incorporated 259 -- R eferences 259 -- Chapter 10. MOLECULAR- AND NANOCRYSTAL-BASED -- Photovoltaics -- Laura A. Swafford, Sandra J. Rosenthal -- 1. Introduction 263 -- 2. p-n Junction Silicon Solar Cells 264 -- 3. Photosynthesis: Nature's Solar Cell 266 -- 4. Molecular- and Nanomaterial-Based Photovoltaics 267 -- 4.1. Schottky Photodiodes 267 -- 4.2. Sandwich Heterojunction Photovoltaics 277 -- 4.3. Bulk Heterojunction Photovoltaics 279 -- 5. Future Photovoltaics 284 -- 6. Concluding Remarks 286 -- Appendix: Photovoltaic Efficiencies 286 -- A .1. Lighting Conditions 286 -- A.2. Calculating Photovoltaic Efficiencies 287 -- Acknowledgments 287 -- R eferences 287 -- Chapter 11. ORGANIC THIN FILM TRANSISTORS -- Hagen Klauk, Thomas N. Jackson -- 1. Introduction 291 -- 2. Pushing the Limits 296 -- 3. Device Architectures 297 -- 4. Flexible Substrate Technology 297 -- 5. Gate Dielectrics 299 -- 6. Low-Cost Proc.




Structural DNA Nanotechnology


Book Description

Written by the founder of the field, this is a comprehensive and accessible introduction to structural DNA nanotechnology.