Functions and Mechanisms of Bacterial Protein Homeostasis and Stress Responses


Book Description

The Cover Image for This Research Topic is Used With Permission of the Authors and Publishers of the Following Article: Winkler J, Seybert A, König L, Pruggnaller S, Haselmann U, Sourjik V, Weiss M, Frangakis AS, Mogk A, Bukau B.EMBO J. 2010 Mar 3;29(5):910-23. doi: 10.1038/emboj.2009.412. Epub 2010 Jan 21




Protein Homeostasis


Book Description

Proper folding of proteins is crucial for cell function. Chaperones and enzymes that post-translationally modify newly synthesized proteins help ensure that proteins fold correctly, and the unfolded protein response functions as a homeostatic mechanism that removes misfolded proteins when cells are stressed. This book covers the entire spectrum of proteostasis in healthy cells and the diseases that result when control of protein production, protein folding, and protein degradation goes awry.




Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria


Book Description

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.




Protein Homeostasis Diseases


Book Description

Protein Homeostasis Diseases: Mechanisms and Novel Therapies offers an interdisciplinary examination of the fundamental aspects, biochemistry and molecular biology of protein homeostasis disease, including the use of natural and pharmacological small molecules to treat common and rare protein homeostasis disorders. Contributions from international experts discuss the biochemical and genetic components of protein homeostasis disorders, the mechanisms by which genetic variants may cause loss-of-function and gain-of-toxic-function, and how natural ligands can restore protein function and homeostasis in genetic diseases. Applied chapters provide guidance on employing high throughput sequencing and screening methodologies to develop pharmacological chaperones and repurpose approved drugs to treat protein homeostasis disorders. - Provides an interdisciplinary examination of protein homeostasis disorders, with an emphasis on treatment strategies employing small natural and pharmacological ligands - Offers applied approaches in employing high throughput sequencing and screening to develop pharmacological chaperones to treat protein homeostasis disease - Gathers expertise from a range of international chapter authors who work across various biological methods and disease specific disciplines of relevance




The Nramp Family


Book Description

This book is the first comprehensive volume on the "Nramp family", highlighting the physiological importance of Nramp proteins as metal transporters. The molecular knowledge of these membrane proteins is presented from an evolutionary perspective, considering Nramp cellular function and mechanism of transport in key model organisms. The pathological significance of Nramp genetic polymorphism is discussed with emphasis on metal homeostasis and microbial infection. The chapters were contributed by leading investigators, providing a timely state of the art book in this rapidly growing field. The Nramp Family will be useful to a broad community of scientists interested in metal transport and molecular biology. It will be of interest to the research audience in the broad fields of metal ions and molecular medicine.




Redox Biochemistry


Book Description

This is the premier, single-source reference on redox biochemistry, a rapidly emerging field. This reference presents the basic principles and includes detailed chapters focusing on various aspects of five primary areas of redox biochemistry: antioxidant molecules and redox cofactors; antioxidant enzymes; redox regulation of physiological processes; pathological processes related to redox; and specialized methods. This is a go-to resource for professionals in pharmaceuticals, medicine, immunology, nutrition, and environmental fields and an excellent text for upper-level students.




Protein Kinases and Stress Signaling in Plants


Book Description

A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.




The Unfolded Protein Response


Book Description

This volume is divided in six section covering the most experimental approaches involved in the study of the unfolded protein response (UPR) pathway. Chapters detail determination of unfolded protein levels, methods to study UPR signal transmission, analysing the outcomes of the UPR pathway activation, UPR studies in mammalian models, UPR in alternative models, and UPR and disease. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, The Unfolded Protein Response: Methods and Protocols aims to describe key methods and approaches used in the study of the UPR pathway and its complex cellular implications. Chapter 6 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Translation and Its Regulation in Cancer Biology and Medicine


Book Description

This book, for the first time, comprehensively assembles and analyzes a large body of information on the role of the fundamental mechanism of the protein biosynthesis pathway, translation, in cancer biology. It systematically explores the function of the translation machinery and its regulation, including cell signaling, in the development, maintenance and progression of human cancer. The work presented here unveils the tremendous potential and applications of this vast and exciting branch of genetic, biochemical and molecular science in cancer medicine and drug development. Chapters contributed by experts in the field take the reader on a journey that starts with a dissection of the translation machinery and its regulation in norm and cancer. Later chapters characterize etiological and pathogenetic roles that translation plays in specific cancer types. Various aspects of diagnostic, prognostic and therapeutic significance of the translation machinery and its control in cancer are discussed. Readers will discover the importance of the process of translation and its regulatory mechanisms in physiology and cancer biology. The chapters and the numerous illustrations included here were contributed by expert scientists and clinicians from renowned academic and clinical establishments in Canada, the United States of America, the United Kingdom, Italy, France, Belgium, Spain, Germany and Australia. The book conveys information and knowledge that may interest a broad range of students and scholars ranging from basic scientists to clinicians and drug developers seeking to better understand the protein synthesis and its aberrations in cancer biology and cancer medicine.




Regulation of Bacterial Virulence


Book Description

A comprehensive compendium of scholarly contributions relating to bacterial virulence gene regulation. • Provides insights into global control and the switch between distinct infectious states (e.g., acute vs. chronic). • Considers key issues about the mechanisms of gene regulation relating to: surface factors, exported toxins and export mechanisms. • Reflects on how the regulation of intracellular lifestyles and the response to stress can ultimately have an impact on the outcome of an infection. • Highlights and examines some emerging regulatory mechanisms of special significance. • Serves as an ideal compendium of valuable topics for students, researchers and faculty with interests in how the mechanisms of gene regulation ultimately affect the outcome of an array of bacterial infectious diseases.