Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures


Book Description

Here is a discussion of the state of the art of spin resonance in low dimensional structures, such as two-dimensional electron systems, quantum wires, and quantum dots. Leading scientists report on recent advances and discuss open issues and perspectives.




FUNDAMENTALS OF PHYSICS - Volume II


Book Description

Fundamentals of Physics is a component of Encyclopedia of Physical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. The Theme on Fundamentals of Physics provides an overview of the modern areas in physics, most of which had been crystallized in the 20th century, is given. The Theme on Fundamentals of Physics deals, in three volumes and cover several topics, with a myriad of issues of great relevance to our world such as: Historical Review of Elementary Concepts in Physics; Laws of Physical Systems; Particles and Fields; Quantum Systems; Order and Disorder in Nature; Topical Review: Nuclear Processes, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers, NGOs and GOs.




Two-Dimensional Electron Systems


Book Description

Recent studies on two-dimensional systems have led to new insights into the fascinating interplay between physical properties and dimensionality. Many of these ideas have emerged from work on electrons bound to the surface of a weakly polarizable substrate such as liquid helium or solid hydrogen. The research on this subject continues to be at the forefront of modern condensed matter physics because of its fundamental simplicity as well as its connection to technologically useful devices. This book is the first comprehensive overview of experimental and theoretical research in this exciting field. It is intended to provide a coherent introduction for graduate students and non-experts, while at the same time serving as a reference source for active researchers in the field. The chapters are written by individuals who made significant contributions and cover a variety of specialized topics. These include the origin of the surface states, tunneling and magneto-tunneling out of these states, the phase diagram, collective excitations, transport and magneto-transport.




Low-Dimensional Systems: Theory, Preparation, and Some Applications


Book Description

This volume contains papers presented at the NATO Advanced Research Workshop (ARW) Dynamic Interactions in Quantum Dot Systems held at Hotel Atrium in Puszczykowo, near Poznan, Poland, May 16-19,2002. The term low-dimensional systems, which is used in the title of this volume, refers to those systems which contain at least one dimension that is intermediate between those characteristic ofatoms/molecules and those ofthe bulk material. Depending on how many dimensions lay within this range, we generally speak of quantum wells, quantum wires, and quantum dots. As such an intermediate state, some properties of low-dimensional systems are very different to those of their molecular and bulk counterparts. These properties generally include optical, electronic, and magnetic properties, and all these are partially covered in this book. The main goal of the workshop was to discuss the actual state of the art in the broad area ofnanotechnology. The initial focus was on the innovative synthesis of nanomaterials and their properties such as: quantum size effects, superparamagnetism, or field emission. These topics lead us into the various field based interactions including plasmon- magnetic spin- and exciton coupling. The newer, more sophisticated methods for characterization of nanomaterials were discussed, as well as the methods for possible industrial applications. In general, chemists and physicists, as well as experts on both theory and experiments on nanosized regime structures were brought together, to discuss the general phenomena underlying their fields ofinterest from different points ofview.




FUNDAMENTALS OF PHYSICS - Volume I


Book Description

Fundamentals of Physics is a component of Encyclopedia of Physical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. The Theme on Fundamentals of Physics provides an overview of the modern areas in physics, most of which had been crystallized in the 20th century, is given. The Theme on Fundamentals of Physics deals, in three volumes and cover several topics, with a myriad of issues of great relevance to our world such as: Historical Review of Elementary Concepts in Physics; Laws of Physical Systems; Particles and Fields; Quantum Systems; Order and Disorder in Nature; Topical Review: Nuclear Processes, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers, NGOs and GOs.




Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems


Book Description

The first part provides a general introduction to the electronic structure of quasi-two-dimensional systems with a particular focus on group-theoretical methods. The main part of the monograph is devoted to spin-orbit coupling phenomena at zero and nonzero magnetic fields. Throughout the book, the main focus is on a thorough discussion of the physical ideas and a detailed interpretation of the results. Accurate numerical calculations are complemented by simple and transparent analytical models that capture the important physics.




Low-Dimensional Electronic Systems


Book Description

Owing to new physical, technological, and device concepts of low-dimensionalelectronic systems, the physics and fabrication of quasi-zero, one- and two-dimensional systems are rapidly growing fields. The contributions presented in this volume cover results of nanostructure fabrication including recently developed techniques, for example, tunneling probe techniques and molecular beam epitaxy, quantum transport including the integer and fractional quantum Hall effect, optical and transport studies of the two-dimensional Wigner solid, phonon studies of low-dimensional systems, and Si/SiGe heterostructures and superlattices. To the readers new in the field this volume gives a comprehensive introduction and for the experts it is an update of their knowledge and a great help for decisions about future research activities.




Low-Dimensional Semiconductor Structures


Book Description

Low-Dimensional Semiconductor Structures offers a seamless, atoms-to-devices introduction to the latest quantum heterostructures. It covers their fabrication; electronic, optical, and transport properties; role in exploring new physical phenomena; and utilization in devices. The authors describe the epitaxial growth of semiconductors and the physical behavior of electrons and phonons in low-dimensional structures. They then go on to discuss nonlinear optics in quantum heterostructures. The final chapters deal with semiconductor lasers, mesoscopic devices, and high-speed heterostructure devices. The book contains many exercises and comprehensive references.




Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems


Book Description

The physics of strongly correlated fermions and bosons in a disordered envi ronment and confined geometries is at the focus of intense experimental and theoretical research efforts. Advances in material technology and in low temper ature techniques during the last few years led to the discoveries of new physical of atomic gases and a possible metal phenomena including Bose condensation insulator transition in two-dimensional high mobility electron structures. Situ ations were the electronic system is so dominated by interactions that the old concepts of a Fermi liquid do not necessarily make a good starting point are now routinely achieved. This is particularly true in the theory of low dimensional systems such as carbon nanotubes, or in two dimensional electron gases in high mobility devices where the electrons can form a variety of new structures. In many of these sys tems disorder is an unavoidable complication and lead to a host of rich physical phenomena. This has pushed the forefront of fundamental research in condensed matter towards the edge where the interplay between many-body correlations and quantum interference enhanced by disorder has become the key to the understand ing of novel phenomena.




Low-Dimensional and Nanostructured Materials and Devices


Book Description

This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.