Fundamental Physics Of Sound


Book Description

This is a textbook on the basic sciences of sound. It contains sufficient latest information on the subject and is divided into four parts that fit into the semester structure.The first part deals with basic Newton's second law of motion, simple harmonic oscillation, and wave properties. Newton's second law, 'the net force is equal to the rate of change of momentum,' is used to derive the speed of waves in a medium. The second part focuses on the psychoacoustics of our perception of three attributes of sound: loudness, pitch and timbre. The third part discusses the basic physics of some musical instruments and human voice. From the point of view of physics, musical instruments and human speech are similar. They are composed of a sound source and a resonator. Human ingenuity has produced various aesthetic-looking and ear-pleasing instruments for musicians to perform. Magical human evolution has also shaped our vocal folds and vocal tract so that we can dynamically change loudness, pitch, and timbre in an instant, in a manner that no other musical instrument can emulate. The fourth part includes electricity and magnetism, room acoustics, digital technology in acoustics, effects of noise on human hearing, and noise regulations for hearing protection that are relevant to sound wave production, transmission, storage, and human ear protection. Our ears are extremely sensitive. Without proper protection, loud noise including loud music can damage our ears. Government regulation and education serve as a first line of protection in working environments.This small book is comprehensible, understandable and enjoyable to all eager students.




Physics and Music


Book Description

Comprehensive and accessible, this foundational text surveys general principles of sound, musical scales, characteristics of instruments, mechanical and electronic recording devices, and many other topics. More than 300 illustrations plus questions, problems, and projects.




The Physics of Music and Color


Book Description

The Physics of Music and Color deals with two subjects, music and color - sound and light in the physically objective sense - in a single volume. The basic underlying physical principles of the two subjects overlap greatly: both music and color are manifestations of wave phenomena, and commonalities exist as to the production, transmission, and detection of sound and light. This book aids readers in studying both subjects, which involve nearly the entire gamut of the fundamental laws of classical as well as modern physics. Where traditional introductory physics and courses are styled so that the basic principles are introduced first and are then applied wherever possible, this book is based on a motivational approach: it introduces a subject by demonstrating a set of related phenomena, challenging readers by calling for a physical basis for what is observed. The Physics of Music and Color is written at level suitable for college students without any scientific background, requiring only simple algebra and a passing familiarity with trigonometry. It contains numerous problems at the end of each chapter that help the reader to fully grasp the subject.




Music, Physics and Engineering


Book Description

This extraordinarily comprehensive text, requiring no special background, discusses the nature of sound waves, musical instruments, musical notation, acoustic materials, elements of sound reproduction systems, and electronic music. Includes 376 figures.




Acoustics


Book Description

Presents the main basis of modelling in acoustics. Includes the procedures used to describe a physical phenomenon by a system of equations and then to solve this system by analytical and/or numerical methods.




Physics of the Piano


Book Description

Why does a piano sound like a piano? A similar question can be asked of virtually all musical instruments. A particular note-such as middle C-can be produced by a piano, a violin, a clarinet, and many other instruments, yet it is easy for even a musically untrained listener to distinguish between these different instruments. A central quest in the study of musical instruments is to understand why the sound of the "same" note depends greatly on the instrument, and to elucidate which aspects of an instrument are most critical in producing the musical tones characteristic of the instrument. The primary goal of this book is to investigate these questions for the piano. The explanations in this book use a minimum of mathematics, and are intended for anyone who is interested in music and musical instruments. At the same time, there are many insights relating physics and the piano that will likely be interesting and perhaps surprising for many physicists.




The physics of sound


Book Description




Fundamentals of Physical Acoustics


Book Description

AN AUTHORITATIIVE, UP-TO-DATE INTRODUCTION TO PHYSICAL ACOUSTICS Easy to read and understand, Fundamentals of Physical Acoustics fills a long-standing need for an acoustics text that challenges but does not overpower graduate students in engineering and physics. Mathematical results and physical explanations go hand in hand, and a unique feature of the book is the balance it strikes between time-domain and frequency-domain presentations. Fundamentals of Physical Acoustics is intended for a two-semester, first-year graduate course, but is also suitable for advanced undergraduates. Emphasis on plane waves in the first part of the book keeps the mathematics simple yet accommodates a broad range of topics: propagation, reflection and transmission, normal modes and simple waveguides for rectilinear geometries, horns, inhomogeneous media, and sound absorption and dispersion. The second part of the book is devoted to a more rigorous development of the wave equation, spherical and cylindrical waves (including the more advanced mathematics required), advanced waveguides, baffled piston radiation, diffraction (treated in the time domain), and arrays. Applications and examples are drawn from: * Atmospheric acoustics * Noise control * Underwater acoustics * Engineering acoustics * Acoustical measurements Supplemented with more than 300 graphs and figures as well as copious end-of-chapter problems, Fundamentals of Physical Acoustics is also an excellent professional reference for engineers and scientists.




Good Vibrations


Book Description

Why does a harpsichord sound different from a piano? For that matter, why does middle C on a piano differ from middle C on a tuning fork, a trombone, or a flute? Good Vibrations explains in clear, friendly language the out-of-sight physics responsible not only for these differences but also for the whole range of noises we call music. The physical properties and history of sound are fascinating to study. Barry Parker's tour of the physics of music details the science of how instruments, the acoustics of rooms, electronics, and humans create and alter the varied sounds we hear. Using physics as a base, Parker discusses the history of music, how sounds are made and perceived, and the various effects of acting on sounds. In the process, he demonstrates what acoustics can teach us about quantum theory and explains the relationship between harmonics and the theory of waves. Peppered throughout with anecdotes and examples illustrating key concepts, this invitingly written book provides a firm grounding in the actual and theoretical physics of music.




An Introduction to Acoustics


Book Description

Undergraduate-level text examines waves in air and in three dimensions, interference patterns and diffraction, and acoustic impedance, as illustrated in the behavior of horns. 1951 edition.