Fundamentals de Ciencia de Polimeros


Book Description

This is a new, basic introduction to polymer science. It is both comprehensive and readable. The authors are leading educators in this field with extensive backgrounds in industrial and academic polymer research. The text starts with a description of the types of microstructures found in polymer materials. This provides an understanding of some of the key features of the various mechanisms of homopolymerization and copolymerization which are discussed in following chapters. Also discussed in these chapters are the kinetics and statistics of polymerization, with a separate chapter on the characterization of chain structure by spectroscopic methods. The next part of the text deals with chain conformation, structure and morphology, leading to a discussion of crystallization, melting and glass transition. The discussion then moves from solid state to solution properties where solution thermodynamics is introduced. This provides the basis for discussion of the measurement of molecular weight by various solution methods. The final chapter deals with mechanical and rheological properties which are discussed from a phenomenological continuum approach and then in terms of a fundamental molecular perspective. Altogether, this new text provides a comprehensive, readable introduction to and overview of polymer science. It is well illustrated with schematics prepared for this text to help in the understanding of key concepts. It will provide a basic understanding of today's polymer science for technical and engineering personnel not already familiar with the subject, and a convenient update and overview for materials scientists.




Forthcoming Books


Book Description




Fundamentals de Ciencia de Polimeros


Book Description

This is a new, basic introduction to polymer science. It is both comprehensive and readable. The authors are leading educators in this field with extensive backgrounds in industrial and academic polymer research. The text starts with a description of the types of microstructures found in polymer materials. This provides an understanding of some of the key features of the various mechanisms of homopolymerization and copolymerization which are discussed in following chapters. Also discussed in these chapters are the kinetics and statistics of polymerization, with a separate chapter on the characterization of chain structure by spectroscopic methods. The next part of the text deals with chain conformation, structure and morphology, leading to a discussion of crystallization, melting and glass transition. The discussion then moves from solid state to solution properties where solution thermodynamics is introduced. This provides the basis for discussion of the measurement of molecular weight by various solution methods. The final chapter deals with mechanical and rheological properties which are discussed from a phenomenological continuum approach and then in terms of a fundamental molecular perspective. Altogether, this new text provides a comprehensive, readable introduction to and overview of polymer science. It is well illustrated with schematics prepared for this text to help in the understanding of key concepts. It will provide a basic understanding of today's polymer science for technical and engineering personnel not already familiar with the subject, and a convenient update and overview for materials scientists.




Fundamentals de Ciencia de Polimeros


Book Description

This is a new, basic introduction to polymer science. It is both comprehensive and readable. The authors are leading educators in this field with extensive backgrounds in industrial and academic polymer research. The text starts with a description of the types of microstructures found in polymer materials. This provides an understanding of some of the key features of the various mechanisms of homopolymerization and copolymerization which are discussed in following chapters. Also discussed in these chapters are the kinetics and statistics of polymerization, with a separate chapter on the characterization of chain structure by spectroscopic methods. The next part of the text deals with chain conformation, structure and morphology, leading to a discussion of crystallization, melting and glass transition. The discussion then moves from solid state to solution properties where solution thermodynamics is introduced. This provides the basis for discussion of the measurement of molecular weight by various solution methods. The final chapter deals with mechanical and rheological properties which are discussed from a phenomenological continuum approach and then in terms of a fundamental molecular perspective. Altogether, this new text provides a comprehensive, readable introduction to and overview of polymer science. It is well illustrated with schematics prepared for this text to help in the understanding of key concepts. It will provide a basic understanding of today's polymer science for technical and engineering personnel not already familiar with the subject, and a convenient update and overview for materials scientists.




Polymer Morphology


Book Description

With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials




Rheological Fundamentals of Polymer Processing


Book Description

Experts in rheology and polymer processing present up-to-date, fundamental and applied information on the rheological properties of polymers, in particular those relevant to processing, contributing to the physical understanding and the mathematical modelling of polymer processing sequences. Basic concepts of non-Newtonian fluid mechanics, micro-rheological modelling and constitutive modelling are reviewed, and rheological measurements are described. Topics with practical relevance are debated, such as linear viscoelasticity, converging and diverging flows, and the rheology of multiphase systems. Approximation methods are discussed for the computer modelling of polymer melt flow. Subsequently, polymer processing technologies are studied from both simulation and engineering perspectives. Mixing, crystallization and reactive processing aspects are also included. Audience: An integrated and complete view of polymer processing and rheology, important to institutions and individuals engaged in the characterisation, testing, compounding, modification and processing of polymeric materials. Can also support academic polymer processing engineering programs.




The Chemistry and Physics of Engineering Materials


Book Description

This volume presents leading-edge research from around the world on modern analytic methodologies in the chemistry and physics of engineering materials that have potential for applications in several disciplines of engineering and science. Contributions range from new methods to novel applications of existing methods. The collection of topics in this volume reflects the diversity of recent advances in chemistry and physics of engineering materials and provides a broad perspective that will be useful for scientists as well as for graduate students and engineers. Topics in the book include • methods for the quality of gas-filled polymer materials • radiometric measurements deposits of surface water • hydrophobic material-supported platinum catalysts • concepts of the physical chemistry of polymers in technologies and environmental protection • application-able radicals for the study of behavior of biological systems • surface-modified magnetic nanoparticles for cell labeling • sorption of industrial dyes by inorganic rocks from aqueous solutions • various method for steel surface modification • recent advances in fire retardant composites • much more This volume is also sold as part of a two-volume set. Volume 2 focuses on the limitations, properties, and models of engineering materials.




Fundamentals of Polymer Science


Book Description

Now in its second edition, this widely used text provides a unique presentation of today's polymer science. It is both comprehensive and readable. The authors are leading educators in this field with extensive background in industrial and academic polymer research. The text starts with a description of the types of microstructures found in polymer