An Introduction to Beam Physics


Book Description

The field of beam physics touches many areas of physics, engineering, and the sciences. In general terms, beams describe ensembles of particles with initial conditions similar enough to be treated together as a group so that the motion is a weakly nonlinear perturbation of a chosen reference particle. Particle beams are used in a variety of areas, ranging from electron microscopes, particle spectrometers, medical radiation facilities, powerful light sources, and astrophysics to large synchrotrons and storage rings such as the LHC at CERN. An Introduction to Beam Physics is based on lectures given at Michigan State University’s Department of Physics and Astronomy, the online VUBeam program, the U.S. Particle Accelerator School, the CERN Academic Training Programme, and various other venues. It is accessible to beginning graduate and upper-division undergraduate students in physics, mathematics, and engineering. The book begins with a historical overview of methods for generating and accelerating beams, highlighting important advances through the eyes of their developers using their original drawings. The book then presents concepts of linear beam optics, transfer matrices, the general equations of motion, and the main techniques used for single- and multi-pass systems. Some advanced nonlinear topics, including the computation of aberrations and a study of resonances, round out the presentation.




Fundamentals of Beam Physics


Book Description

This text presents beam physics using a unified approach emphasizing basic concepts and analysis methods. Beyond single particle dynamics, the proliferation of commonly used beam descriptions are surveyed and compared. Aspects of experimental techniques are introduced.




Materials Fundamentals of Molecular Beam Epitaxy


Book Description

The technology of crystal growth has advanced enormously during the past two decades. Among, these advances, the development and refinement of molecular beam epitaxy (MBE) has been among the msot important. Crystals grown by MBE are more precisely controlled than those grown by any other method, and today they form the basis for the most advanced device structures in solid-state physics, electronics, and optoelectronics. As an example, Figure 0.1 shows a vertical-cavity surface emitting laser structure grown by MBE.* Provides comprehensive treatment of the basic materials and surface science principles that apply to molecular beam epitaxy* Thorough enough to benefit molecular beam epitaxy researchers* Broad enough to benefit materials, surface, and device researchers* Referenes articles at the forefront of modern research as well as those of historical interest




Fundamentals of Particle Accelerator Physics


Book Description

This book offers a concise and coherent introduction to accelerator physics and technology at the fundamental level but still in connection to advanced applications ranging from high-energy colliders to most advanced light sources, i.e., Compton sources, storage rings and free-electron lasers. The book is targeted at accelerator physics students at both undergraduate and graduate levels, but also of interest also to Ph.D. students and senior scientists not specialized in beam physics and accelerator design, or at the beginning of their career in particle accelerators. The book introduces readers to particle accelerators in a logical and sequential manner, with paragraphs devoted to highlight the physical meaning of the presented topics, providing a solid link to experimental results, with a simple but rigorous mathematical approach. In particular, the book will turn out to be self-consistent, including for example basics of Special Relativity and Statistical Mechanics for accelerators. Mathematical derivations of the most important expressions and theorems are given in a rigorous manner, but with simple and immediate demonstration where possible. The understanding gained by a systematic study of the book will offer students the possibility to further specialize their knowledge through the wide and up-to-date bibliography reported. Both theoretical and experimental items are presented with reference to the most recent achievements in colliders and light sources. The author draws on his almost 20-years long experience in the design, commissioning and operation of accelerator facilities as well as on his 10-years long teaching experience about particle accelerators at the University of Trieste, Department of Engineering and of Physics, as well as at international schools on accelerator physics.




Particle Accelerator Physics I


Book Description

In this second edition of Particle Accelerator Physics, Vol. 1, is mainly a reprint of the first edition without significant changes in content. The bibliography has been updated to include more recent progress in the field of particle accelerators. With the help of many observant readers a number of misprints and errors could be eliminated. The author would like to express his sincere appreciation to all those who have pointed out such shortcomings and wel comes such information and any other relevant information in the future. The author would also like to express his special thanks to the editor Dr. Helmut Lotsch and his staff for editorial as well as technical advice and support which contributed greatly to the broad acceptance of this text and made a second edition of both volumes necessary. Palo Alto, California Helmut Wiedemann November 1998 VII Preface to the First Edition The purpose of this textbook is to provide a comprehensive introduction into the physics of particle accelerators and particle beam dynamics. Parti cle accelerators have become important research tools in high energy physics as well as sources of incoherent and coherent radiation from the far infra red to hard x-rays for basic and applied research. During years of teaching accelerator physics it became clear that the single most annoying obstacle to get introduced into the field is the absence of a suitable textbook.




A Practical Introduction to Beam Physics and Particle Accelerators


Book Description

This book provides a brief exposition of the principles of beam physics and particle accelerators with an emphasis on numerical examples employing readily available computer tools. However, it avoids detailed derivations, instead inviting the reader to use general high-end languages such as Mathcad and Matlab, as well as specialized particle accelerator codes (e.g. MAD, WinAgile, Elegant, and others) to explore the principles presented. This approach allows readers to readily identify relevant design parameters and their scaling. In addition, the computer input files can serve as templates that can be easily adapted to other related situations. The examples and computer exercises comprise basic lenses and deflectors, fringe fields, lattice and beam functions, synchrotron radiation, beam envelope matching, betatron resonances, and transverse and longitudinal emittance and space charge. The last chapter presents examples of two major types of particle accelerators: radio frequency linear accelerators (RF linacs) and storage rings. Lastly, the appendix gives readers a brief description of the computer tools employed and concise instructions for their installation and use in the most popular computer platforms (Windows, Macintosh and Ubuntu Linux). Hyperlinks to websites containing all relevant files are also included. An essential component of the book is its website (actually part of the author's website at the University of Maryland), which contains the files that reproduce results given in the text as well as additional material such as technical notes and movies.







Fundamentals of Beam Physics


Book Description

This text discusses the fundamental physical concepts involved in understanding charged particle and photon beams. The presentation is unified; particle dynamics in linear and circular accelerators are discussed in common language, as are the evolution of particle and laser beams. This book is aimed at the advanced undergraduate student, and contains numerous illustrative exercises.




Ion Beam Analysis


Book Description

Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization. The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nuclear reaction analysis. The second part turns to applications, looking at the broad range of potential uses in thin film reactions, ion implantation, nuclear energy, biology, and art/archaeology. Examines classical collision theory Details the fundamentals of five specific ion beam analysis techniques Illustrates specific applications, including biomedicine and thin film analysis Provides examples of ion beam analysis in traditional and emerging research fields Supplying readers with the means to understand the benefits and limitations of IBA, the book offers practical information that users can immediately apply to their own work. It covers the broad range of current and emerging applications in materials science, physics, art, archaeology, and biology. It also includes a chapter on computer applications of IBA.




Electromagnetic Vortices


Book Description

Discover the most recent advances in electromagnetic vortices In Electromagnetic Vortices: Wave Phenomena and Engineering Applications, a team of distinguished researchers delivers a cutting-edge treatment of electromagnetic vortex waves, including their theoretical foundation, related wave properties, and several potentially transformative applications. The book is divided into three parts. The editors first include resources that describe the generation, sorting, and manipulation of vortex waves, as well as descriptions of interesting wave behavior in the infrared and optical regimes with custom-designed nanostructures. They then discuss the generation, multiplexing, and propagation of vortex waves at the microwave and millimeter-wave frequencies. Finally, the selected contributions discuss several representative practical applications of vortex waves from a system perspective. With coverage that incorporates demonstration examples from a wide range of related sub-areas, this essential edited volume also offers: Thorough introductions to the generation of optical vortex beams and transformation optical vortex wave synthesizers Comprehensive explorations of millimeter-wave metasurfaces for high-capacity and broadband generation of vector vortex beams, as well as orbital angular momentum (OAM) detection and its observation in second harmonic generations Practical discussions of microwave SPP circuits and coding metasurfaces for vortex beam generation and OAM-based structured radio beams and their applications In-depth examinations and explorations of OAM multiplexing for wireless communications, wireless power transmission, as well as quantum communications and simulations Perfect for students of wireless communications, antenna/RF design, optical communications, and nanophotonics, Electromagnetic Vortices: Wave Phenomena and Engineering Applications is also an indispensable resource for researchers in academia, at large defense contractors, and in government labs.