Fundamentals of Computer Vision


Book Description

Computer vision has widespread and growing application including robotics, autonomous vehicles, medical imaging and diagnosis, surveillance, video analysis, and even tracking for sports analysis. This book equips the reader with crucial mathematical and algorithmic tools to develop a thorough understanding of the underlying components of any complete computer vision system and to design such systems. These components include identifying local features such as corners or edges in the presence of noise, edge preserving smoothing, connected component labeling, stereopsis, thresholding, clustering, segmentation, and describing and matching both shapes and scenes. The extensive examples include photographs of faces, cartoons, animal footprints, and angiograms, and each chapter concludes with homework exercises and suggested projects. Intended for advanced undergraduate and beginning graduate students, the text will also be of use to practitioners and researchers in a range of applications.




Fundamentals of Computer Vision


Book Description

This book equips students with crucial mathematical and algorithmic tools to understand complete computer vision systems.




Computer Vision and Image Processing


Book Description

The book familiarizes readers with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the book is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the book takes a problem-solving approach.




Computer Vision


Book Description

A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.




Foundations of Computer Vision


Book Description

This book introduces the fundamentals of computer vision (CV), with a focus on extracting useful information from digital images and videos. Including a wealth of methods used in detecting and classifying image objects and their shapes, it is the first book to apply a trio of tools (computational geometry, topology and algorithms) in solving CV problems, shape tracking in image object recognition and detecting the repetition of shapes in single images and video frames. Computational geometry provides a visualization of topological structures such as neighborhoods of points embedded in images, while image topology supplies us with structures useful in the analysis and classification of image regions. Algorithms provide a practical, step-by-step means of viewing image structures. The implementations of CV methods in Matlab and Mathematica, classification of chapter problems with the symbols (easily solved) and (challenging) and its extensive glossary of key words, examples and connections with the fabric of CV make the book an invaluable resource for advanced undergraduate and first year graduate students in Engineering, Computer Science or Applied Mathematics. It offers insights into the design of CV experiments, inclusion of image processing methods in CV projects, as well as the reconstruction and interpretation of recorded natural scenes.




Color in Computer Vision


Book Description

While the field of computer vision drives many of today’s digital technologies and communication networks, the topic of color has emerged only recently in most computer vision applications. One of the most extensive works to date on color in computer vision, this book provides a complete set of tools for working with color in the field of image understanding. Based on the authors’ intense collaboration for more than a decade and drawing on the latest thinking in the field of computer science, the book integrates topics from color science and computer vision, clearly linking theories, techniques, machine learning, and applications. The fundamental basics, sample applications, and downloadable versions of the software and data sets are also included. Clear, thorough, and practical, Color in Computer Vision explains: Computer vision, including color-driven algorithms and quantitative results of various state-of-the-art methods Color science topics such as color systems, color reflection mechanisms, color invariance, and color constancy Digital image processing, including edge detection, feature extraction, image segmentation, and image transformations Signal processing techniques for the development of both image processing and machine learning Robotics and artificial intelligence, including such topics as supervised learning and classifiers for object and scene categorization Researchers and professionals in computer science, computer vision, color science, electrical engineering, and signal processing will learn how to implement color in computer vision applications and gain insight into future developments in this dynamic and expanding field.




Fundamentals of Machine Vision


Book Description

This text is intended to help readers understand and construct machine vision systems that perform useful tasks, based on the state of the art. It covers fundamentals drawn from image processing and computer graphics to the methods of applied machine vision techniques. The text is useful as a short course supplement, as a self-study guide, or as a primary or supplementary text in an advanced undergraduate or graduate course.




Image Restoration


Book Description

Image Restoration: Fundamentals and Advances responds to the need to update most existing references on the subject, many of which were published decades ago. Providing a broad overview of image restoration, this book explores breakthroughs in related algorithm development and their role in supporting real-world applications associated with various scientific and engineering fields. These include astronomical imaging, photo editing, and medical imaging, to name just a few. The book examines how such advances can also lead to novel insights into the fundamental properties of image sources. Addressing the many advances in imaging, computing, and communications technologies, this reference strikes just the right balance of coverage between core fundamental principles and the latest developments in this area. Its content was designed based on the idea that the reproducibility of published works on algorithms makes it easier for researchers to build on each other’s work, which often benefits the vitality of the technical community as a whole. For that reason, this book is as experimentally reproducible as possible. Topics covered include: Image denoising and deblurring Different image restoration methods and recent advances such as nonlocality and sparsity Blind restoration under space-varying blur Super-resolution restoration Learning-based methods Multi-spectral and color image restoration New possibilities using hybrid imaging systems Many existing references are scattered throughout the literature, and there is a significant gap between the cutting edge in image restoration and what we can learn from standard image processing textbooks. To fill that need but avoid a rehash of the many fine existing books on this subject, this reference focuses on algorithms rather than theories or applications. Giving readers access to a large amount of downloadable source code, the book illustrates fundamental techniques, key ideas developed over the years, and the state of the art in image restoration. It is a valuable resource for readers at all levels of understanding.




Computer Vision Technology for Food Quality Evaluation


Book Description

The first book in this rapidly expanding area, Computer Vision Technology for Food Quality Evaluation thoroughly discusses the latest advances in image processing and analysis. Computer vision has attracted much research and development attention in recent years and, as a result, significant scientific and technological advances have been made in quality inspection, classification and evaluation of a wide range of food and agricultural products. This unique work provides engineers and technologists working in research, development, and operations in the food industry with critical, comprehensive and readily accessible information on the art and science of computer vision technology. Undergraduate and postgraduate students and researchers in universities and research institutions will also find this an essential reference source.· Discusses novel technology for recognizing objects and extracting quantitative information from digital images in order to provide objective, rapid, non-contact and non-destructive quality evaluation. · International authors with both academic and professional credentials address in detail one aspect of the relevant technology per chapter making this ideal for textbook use· Divided into three parts, it begins with an outline of the fundamentals of the technology, followed by full coverage of the application in the most researched areas of meats and other foods, fruits, vegetables and grains.




A Guided Tour of Computer Vision


Book Description

An introduction to computer vision, covering the structure and properties of the visual world. This concise guide stresses fundamental concepts, and also provides details and pointers with respect to recent developments. The author pursues the narrow view of vision covering the structure and properties of the visual world, thereby providing a lucid introduction for the novice and a fresh perspective to the expert.