Fundamentals of Continuum Mechanics


Book Description

A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energy, and ideal constitutive relations and is a suitable textbook for introductory graduate courses for students in mechanical and civil engineering, as well as those studying material science, geology and geophysics and biomechanics. A concise introductory course text on continuum mechanics Covers the fundamentals of continuum mechanics Uses modern tensor notation Contains problems and accompanied by a companion website hosting solutions Suitable as a textbook for introductory graduate courses for students in mechanical and civil engineering




Fundamentals of Continuum Mechanics


Book Description

Fundamentals of Continuum Mechanics provides a clear and rigorous presentation of continuum mechanics for engineers, physicists, applied mathematicians, and materials scientists. This book emphasizes the role of thermodynamics in constitutive modeling, with detailed application to nonlinear elastic solids, viscous fluids, and modern smart materials. While emphasizing advanced material modeling, special attention is also devoted to developing novel theories for incompressible and thermally expanding materials. A wealth of carefully chosen examples and exercises illuminate the subject matter and facilitate self-study. - Uses direct notation for a clear and straightforward presentation of the mathematics, leading to a better understanding of the underlying physics - Covers high-interest research areas such as small- and large-deformation continuum electrodynamics, with application to smart materials used in intelligent systems and structures - Offers a unique approach to modeling incompressibility and thermal expansion, based on the authors' own research




Fundamentals of Continuum Mechanics of Soils


Book Description

Fundamentals of Continuum Mechanics of Soils provides a long-needed general scheme for the study of the important yet problematic material of soil. It closes the gap between two disciplines, soil mechanics and con- tinuum mechanics, showing that the familiar concepts of soil mechanics evolve directly from continuum mechanics. It confirms concepts such as pore pressures, cohesion and dependence of the shear stress on consolidation, and rejects the view that continuum mechanics cannot be applied to a material such as soil. The general concepts of continuum mechanics, field equations and constitutive equations are discussed. It is shown how the theory of mixtures evolves from these equations and how, along with energetics and irrevers- ible thermodynamics, it can be applied to soils. The discussion also sheds light on some aspects of mechanics of materials, especially compressible materials. Examples are the introduction of the Hencky measure of strain, the requirement of dual constitutive equations, and the dependence of the spent internal energy on the stored internal energy. Researchers in engineering mechanics and material sciences may find that the results of experiments on soils can be generalized and extended to other materials. The book is a reference text for students familiar with the fundamentals of mechanics, for scholars of soil engineering, and for soil scientists. It is also suitable as an advanced undergraduate course in soil mechanics.




Continuum Mechanics using Mathematica®


Book Description

This textbook's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. Covering essential principles and fundamental applications, this second edition of Continuum Mechanics using Mathematica® provides a solid basis for a deeper study of more challenging and specialized problems related to nonlinear elasticity, polar continua, mixtures, piezoelectricity, ferroelectricity, magneto-fluid mechanics and state changes (see A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Research Trends, Springer (Birkhäuser), 2010, ISBN 978-0-8176-4869-5). Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and one appendix * Recent developments highlighted through coverage of more significant applications to areas such as wave propagation, fluid mechanics, porous media, linear elasticity. This second edition expands the key topics and features to include: * Two new applications of fluid dynamics: meteorology and navigation * New exercises at the end of the existing chapters * The packages are rewritten for Mathematica 9 Continuum Mechanics using Mathematica®: Fundamentals, Applications and Scientific Computing is aimed at advanced undergraduates, graduate students and researchers in applied mathematics, mathematical physics and engineering. It may serve as a course textbook or self-study reference for anyone seeking a solid foundation in continuum mechanics.




Variational Principles of Continuum Mechanics


Book Description

Thereareabout500booksonvariationalprinciples. Theyareconcernedmostlywith the mathematical aspects of the topic. The major goal of this book is to discuss the physical origin of the variational principles and the intrinsic interrelations between them. For example, the Gibbs principles appear not as the rst principles of the theory of thermodynamic equilibrium but as a consequence of the Einstein formula for thermodynamic uctuations. The mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for direct study of variational problems. Thebookisacompletelyrewrittenversionoftheauthor’smonographVariational Principles of Continuum Mechanics which appeared in Russian in 1983. I have been postponing the English translation because I wished to include the variational pr- ciples of irreversible processes in the new edition. Reaching an understanding of this subject took longer than I expected. In its nal form, this book covers all aspects of the story. The part concerned with irreversible processes is tiny, but it determines the accents put on all the results presented. The other new issues included in the book are: entropy of microstructure, variational principles of vortex line dynamics, va- ational principles and integration in functional spaces, some stochastic variational problems, variational principle for probability densities of local elds in composites with random structure, variational theory of turbulence; these topics have not been covered previously in monographic literature.




Introduction to Continuum Mechanics


Book Description

Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive equations for viscoelastic fluids, and finite deformation theory), this popular introduction to modern continuum mechanics has been fully revised to serve a dual purpose: for introductory courses in undergraduate engineering curricula, and for beginning graduate courses.




Continuum Mechanics


Book Description

A detailed and self-contained text written for beginners, Continuum Mechanics offers concise coverage of the basic concepts, general principles, and applications of continuum mechanics. Without sacrificing rigor, the clear and simple mathematical derivations are made accessible to a large number of students with little or no previous background in solid or fluid mechanics. With the inclusion of more than 250 fully worked-out examples and 500 worked exercises, this book is certain to become a standard introductory text for students as well as an indispensable reference for professionals. - Provides a clear and self-contained treatment of vectors, matrices, and tensors specifically tailored to the needs of continuum mechanics - Develops the concepts and principles common to all areas in solid and fluid mechanics with a common notation and terminology - Covers the fundamentals of elasticity theory and fluid mechanics




Continuum Mechanics


Book Description

Most books on continuum mechanics focus on elasticity and fluid mechanics. But whether student or practicing professional, modern engineers need a more thorough treatment to understand the behavior of the complex materials and systems in use today. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity offers a complete tour of the subject th




Continuum Mechanics and Thermodynamics


Book Description

Treats subjects directly related to nonlinear materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.




Methods of Fundamental Solutions in Solid Mechanics


Book Description

Methods of Fundamental Solutions in Solid Mechanics presents the fundamentals of continuum mechanics, the foundational concepts of the MFS, and methodologies and applications to various engineering problems. Eight chapters give an overview of meshless methods, the mechanics of solids and structures, the basics of fundamental solutions and radical basis functions, meshless analysis for thin beam bending, thin plate bending, two-dimensional elastic, plane piezoelectric problems, and heat transfer in heterogeneous media. The book presents a working knowledge of the MFS that is aimed at solving real-world engineering problems through an understanding of the physical and mathematical characteristics of the MFS and its applications. - Explains foundational concepts for the method of fundamental solutions (MFS) for the advanced numerical analysis of solid mechanics and heat transfer - Extends the application of the MFS for use with complex problems - Considers the majority of engineering problems, including beam bending, plate bending, elasticity, piezoelectricity and heat transfer - Gives detailed solution procedures for engineering problems - Offers a practical guide, complete with engineering examples, for the application of the MFS to real-world physical and engineering challenges