Fundamentals of Electroceramics


Book Description

The first textbook to provide in-depth treatment of electroceramics with emphasis on applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics, and in electro-optics and acousto-optics Electroceramics is a class of ceramic materials used primarily for their electrical properties. This book covers the important topics relevant to this growing field and places great emphasis on devices and applications. It provides sufficient background in theory and mathematics so that readers can gain insight into phenomena that are unique to electroceramics. Each chapter has its own brief introduction with an explanation of how the said content impacts technology. Multiple examples are provided to reinforce the content as well as numerous end-of-chapter problems for students to solve and learn. The book also includes suggestions for advanced study and key words relevant to each chapter. Fundamentals of Electroceramics: Materials, Devices and Applications offers eleven chapters covering: 1.Nature and types of solid materials; 2. Processing of Materials; 3. Methods for Materials Characterization; 4. Binding Forces in Solids and Essential Elements of Crystallography; 5. Dominant Forces and Effects in Electroceramics; 6. Coupled Nonlinear Effects in Electroceramics; 7. Elements of Semiconductor; 8. Electroceramic Semiconductor Devices; 9. Electroceramics and Green Energy; 10.Electroceramic Magnetics; and 11. Electro-optics and Acousto-optics. Provides an in-depth treatment of electroceramics with the emphasis on fundamental theoretical concepts, devices, and applications with focus on non-linear dielectrics Emphasizes applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics and in electro-optics and acousto-optics Introductory textbook for students to learn and make an impact on technology Motivates students to get interested in research on various aspects of electroceramics at undergraduate and graduate levels leading to a challenging career path. Includes examples and problem questions within every chapter that prepare students well for independent thinking and learning. Fundamentals of Electroceramics: Materials, Devices and Applications is an invaluable academic textbook that will benefit all students, professors, researchers, scientists, engineers, and teachers of ceramic engineering, electrical engineering, applied physics, materials science, and engineering.




Electroceramics


Book Description

Electroceramics, Materials, Properties, Applications, Second Edition provides a comprehensive treatment of the many aspects of ceramics and their electrical applications. The fundamentals of how electroceramics function are carefully introduced with their properties and applications also considered. Starting from elementary principles, the physical, chemical and mathematical background of the subject are discussed and wherever appropriate, a strong emphasis is placed on the relationship between microstructire and properties. The Second Edition has been fully revised and updated, building on the foundation of the earlier book to provide a concise text for all those working in the growing field of electroceramics. * fully revised and updated to include the latest technological changes and developments in the field * includes end of chapter problems and an extensive bibliography * an Invaluable text for all Materials Science students. * a useful reference for physicists, chemists and engineers involved in the area of electroceramics.




Advanced Flexible Ceramics


Book Description

Advanced Flexible Ceramics: Design, Properties, Manufacturing, and Emerging Applications provides detailed information on the properties and applications of advanced flexible ceramics. Sections cover materials dependent flexible behavior, microstructure and phases, the operational life of ceramics, how flexible materials can influence smart behavior (shape memory and self-healing), and thermal, physical, mechanical, electrical and optical properties. Various processing routes such as powder metallurgy, both physical and chemical vapor deposition, sol-gel, 3D print, and roll-to-roll processing are also explained in detail. The later section of the book provides detailed coverage of emerging technological applications. Additional chapters cover cost-effectiveness and the global market and recycling and future challenges and perspectives. This will be an essential reference resource for academic and industrial researchers working in the fields of refractory linings, high-temperature equipment, shielding, and MEMS/NEMS. - Covers a new class of flexible ceramic materials for advanced technological applications - Discusses a broad range of topics, including characterization, synthesis, microstructure and properties - Provides advanced technological aspects such as applications, manufacturing processes, industrial assessments and economics




Electroceramics for High Performance Supercapicitors


Book Description

ELECTROCERAMICS FOR HIGH PERFORMANCE SUPERCAPACITORS The book describes the state-of-the-art analyses of high-density supercapacitors. In the near future, high-energy density materials will be required to accommodate the increased demand for gadgets, hybrid cars, and massive electrical energy storage systems. Fuel cells, supercapacitors, and batteries have the highest energy densities, but traditional capacitors have gained attention for intermittent energy harvesting owing to their high energy transfer rate and quick charging/discharging capability. The large amount of electric breakdown strength and modest remnant polarization are keys to the high energy density in dielectric capacitors. Above 100??C or 212??F, polymer dielectric capacitors become unstable and begin to suffer a dielectric breakdown. Hence, dielectric ceramics are the sole viable option for high-temperature applications. This book provides a basic understanding of dielectric-based energy harvesting. After a detailed analysis of the state-of-the-art, it proceeds to explain the specific strategies to enhance energy storage features, including managing the local structure and phases assembly, raising the dielectric width, and enhancing microstructure and electrical uniformity. Also discussed is the need for novel materials with applications in high-density supercapacitors. Audience The book is designed for engineers, industrialists, physicists, scientists, and researchers who work on the applications of high-density supercapacitors.




Ceramic Materials


Book Description

Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, integrated text. Building on a foundation of crystal structures, phase equilibria, defects and the mechanical properties of ceramic materials, students are shown how these materials are processed for a broad diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text. The text concludes with discussions of ceramics in biology and medicine, ceramics as gemstones and the role of ceramics in the interplay between industry and the environment. Extensively illustrated, the text also includes questions for the student and recommendations for additional reading. KEY FEATURES: Combines the treatment of bioceramics, furnaces, glass, optics, pores, gemstones, and point defects in a single text Provides abundant examples and illustrations relating theory to practical applications Suitable for advanced undergraduate and graduate teaching and as a reference for researchers in materials science Written by established and successful teachers and authors with experience in both research and industry




Advances and Applications in Electroceramics


Book Description

This book contains 26 papers from the Magnetoelectric Multiferroic Thin Films and Multilayers; Dielectric Ceramic Materials and Electronic Devices; Recent Developments in High-Temperature Superconductivity; and Multifunctional Oxides symposia held during the 2010 Materials Science and Technology (MS&T'10) meeting, October 17-21, 2010, Houston, Texas. Topics include: Properties; Structures; Synthesis; Characterization; Device Applications; Multiferroics and Magnetoelectrics; YBCO Pinning Methods and Properties; YBCO Processing and Reliability Related Issues; New Superconductors and MgB2.




Functional Materials


Book Description

Functional materials have assumed a very prominent position in several high-tech areas. Such materials are not being classified on the basis of their origin, nature of bonding or processing techniques but are classified on the basis of the functions they can perform. This is a significant departure from the earlier schemes in which materials were described as metals, alloys, ceramics, polymers, glass materials etc. Several new processing techniques have also evolved in the recent past. Because of the diversity of materials and their functions it has become extremely difficult to obtain information from single source. Functional Materials: Preparation, Processing and Applications provides a comprehensive review of the latest developments. - Serves as a ready reference for Chemistry, Physics and Materials Science researchers by covering a wide range of functional materials in one book - Aids in the design of new materials by emphasizing structure or microstructure – property correlation - Covers the processing of functional materials in detail, which helps in conceptualizing the applications of them




Fundamentals of Ceramics


Book Description

Fundamentals of Ceramics presents readers with an exceptionally clear and comprehensive introduction to ceramic science. This Second Edition updates problems and adds more worked examples, as well as adding new chapter sections on Computational Materials Science and Case Studies. The Computational Materials Science sections describe how today density functional theory and molecular dynamics calculations can shed valuable light on properties, especially ones that are not easy to measure or visualize otherwise such as surface energies, elastic constants, point defect energies, phonon modes, etc. The Case Studies sections focus more on applications, such as solid oxide fuel cells, optical fibers, alumina forming materials, ultra-strong and thin glasses, glass-ceramics, strong and tough ceramics, fiber-reinforced ceramic matrix composites, thermal barrier coatings, the space shuttle tiles, electrochemical impedance spectroscopy, two-dimensional solids, field-assisted and microwave sintering, colossal magnetoresistance, among others.




Fundamentals of Piezoelectric Sensorics


Book Description

Presents the fundamental physics of piezoelectric sensors. Only book with this scope Targeted to those engineers, phycisists and chemists who are involved in materials processing, device design and manufacturing.




Classic and Advanced Ceramics


Book Description

Based on the author's lectures to graduate students of geosciences, physics, chemistry and materials science, this didactic handbook covers basic aspects of ceramics such as composition and structure as well as such advanced topics as achieving specific functionalities by choosing the right materials. The focus lies on the thermal transformation processes of natural raw materials to arrive at traditional structural ceramics and on the general physical principles of advanced functional ceramics. The book thus provides practice-oriented information to readers in research, development and engineering on how to understand, make and improve ceramics and derived products, while also serving as a rapid reference for the practitioner. The choice of topics and style of presentation make it equally useful for chemists, materials scientists, engineers and mineralogists.