Fundamentals of Electrochemical Growth


Book Description

The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Fundamentals of Electrochemical Growth: From UPD to Microstructures ¿ Symposium in Memory of Prof. Evgeni Budevski¿, held during the 216th meeting of The Electrochemical Society, in Vienna, Austria from October 4 to 9, 2009.







Fundamentals of Electrochemical Deposition


Book Description

Excellent teaching and resource material . . . it is concise, coherently structured, and easy to read . . . highly recommended for students, engineers, and researchers in all related fields." -Corrosion on the First Edition of Fundamentals of Electrochemical Deposition From computer hardware to automobiles, medical diagnostics to aerospace, electrochemical deposition plays a crucial role in an array of key industries. Fundamentals of Electrochemical Deposition, Second Edition is a comprehensive introduction to one of today's most exciting and rapidly evolving fields of practical knowledge. The most authoritative introduction to the field so far, the book presents detailed coverage of the full range of electrochemical deposition processes and technologies, including: * Metal-solution interphase * Charge transfer across an interphase * Formation of an equilibrium electrode potential * Nucleation and growth of thin films * Kinetics and mechanisms of electrodeposition * Electroless deposition * In situ characterization of deposition processes * Structure and properties of deposits * Multilayered and composite thin films * Interdiffusion in thin film * Applications in the semiconductor industry and the field of medicine This new edition updates the prior edition to address the new developments in the science and its applications, with new chapters on innovative applications of electrochemical deposition in semiconductor technology, magnetism and microelectronics, and medical instrumentation. Added coverage includes such topics as binding energy, nanoclusters, atomic force, and scanning tunneling microscopy.Example problems at the end of chapters and other features clarify and improve understanding of the material. Written by an author team with extensive experience in both industry and academe, this reference and text provides a well-rounded introduction to the field for students, as well as a means for professional chemists, engineers, and technicians to expand and sharpen their skills in using the technology.




Electrodeposition of Nanostructured Materials


Book Description

This book provides an overview of electrodeposition of nanomaterials from principles to modern concepts for advanced materials in science and technology. Electrochemical deposition or electrodeposition is explained for fabrication and mass production of functional and nanostructured device materials. The present book spans from principles to modern insights and concepts. It gives a comprehensive overview of the electrochemistry of materials, which is useful as basic information to understand concepts used for nanostructuring of electrodeposited materials, reviews the electrodeposition constituents, thermodynamics and kinetics of electrodeposition, electrochemical and instrumental assessment techniques and other physical factors affecting the electrodeposition mechanisms. A wide variety of nanostructured materials and related concepts and applications are explained with respect to nanocrystals, nanocrystalline films, template-based nanostructures, nanocomposite films, nanostructures on semiconductors, multilayers, mesoporous films, scanning microscopical probe assisted fabrication and galvanic replacement. This book is useful for researchers in materials science, engineering technologists and graduate students. It can also be used as a textbook for undergraduates and graduate students studying related disciplines.




Electrochemical Methods


Book Description

Das führende Werk auf seinem Gebiet - jetzt durchgängig auf den neuesten Stand gebracht! Die theoretischen Grundlagen der Elektrochemie, erweitert um die aktuellsten Erkenntnisse in der Theorie des Elektronentransfers, werden hier ebenso besprochen wie alle wichtigen Anwendungen, darunter modernste Verfahren (Ultramikroelektroden, modifizierte Elektroden, LCEC, Impedanzspektrometrie, neue Varianten der Pulsvoltammetrie und andere). In erster Linie als Lehrbuch gedacht, läßt sich das Werk aber auch hervorragend zum Selbststudium und zur Auffrischung des Wissensstandes verwenden. Lediglich elementare Grundkenntnisse der physikalischen Chemie werden vorausgesetzt.




Modern Aspects of Electrochemistry 42


Book Description

This volume analyzes and summarizes recent developments in several key interfacial electrochemical systems in the areas of fuel cell electrocatatalysis, electrosynthesis and electrodeposition. The six Chapters are written by internationally recognized experts in these areas and address both fundamental and practical aspects of several existing or emerging key electrochemical technologies. The Chapter by R. Adzic, N. Marinkovic and M. Vukmirovic provides a lucid and authoritative treatment of the electrochemistry and electrocatalysis of Ruthenium, a key element for the devel- ment of efficient electrodes for polymer electrolyte (PEM) fuel cells. Starting from fundamental surface science studies and interfacial considerations, this up-to-date review by some of the pioneers in this field, provides a deep insight in the complex catalytic-electrocatalytic phenomena occurring at the interfaces of PEM fuel cell electrodes and a comprehensive treatment of recent developments in this extremely important field. Several recent breakthroughs in the design of solid oxide fuel cell (SOFC) anodes and cathodes are described in the Chapter of H. Uchida and M. Watanabe. The authors, who have pioneered several of these developments, provide a lucid presentation d- cribing how careful fundamental investigations of interfacial electrocatalytic anode and cathode phenomena lead to novel electrode compositions and microstructures and to significant practical advances of SOFC anode and cathode stability and enhanced electrocatalysis.