Fundamentals of Engineering Numerical Analysis


Book Description

Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.




Fundamentals of Engineering Numerical Analysis


Book Description

Engineers need hands-on experience in solving complex engineering problems with computers. This text introduces numerical methods and shows how to develop, analyze, and use them. A thorough and practical book, it is is intended as a first course in numerical analysis, primarily for beginning graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods. They will learn what factors affect accuracy, stability, and convergence. A special feature is the numerous examples and exercises that are included to give students first-hand experience.




Numerical Methods


Book Description

Offers a comprehensive textbook for a course in numerical methods, numerical analysis and numerical techniques for undergraduate engineering students.




Numerical Methods in Engineering with Python 3


Book Description

Provides an introduction to numerical methods for students in engineering. It uses Python 3, an easy-to-use, high-level programming language.




Numerical Methods for Differential Equations


Book Description

With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.




Fundamentals of Numerical Mathematics for Physicists and Engineers


Book Description

Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics. Fundamentals of Numerical Mathematics for Physicists and Engineers is presented in two parts. Part I addresses the root finding of univariate transcendental equations, polynomial interpolation, numerical differentiation, and numerical integration. Part II examines slightly more advanced topics such as introductory numerical linear algebra, parameter dependent systems of nonlinear equations, numerical Fourier analysis, and ordinary differential equations (initial value problems and univariate boundary value problems). Chapters cover: Newton’s method, Lebesgue constants, conditioning, barycentric interpolatory formula, Clenshaw-Curtis quadrature, GMRES matrix-free Krylov linear solvers, homotopy (numerical continuation), differentiation matrices for boundary value problems, Runge-Kutta and linear multistep formulas for initial value problems. Each section concludes with Matlab hands-on computer practicals and problem and exercise sets. This book: Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section Fundamentals of Numerical Mathematics for Physicists and Engineers is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.




Computational Engineering - Introduction to Numerical Methods


Book Description

Numerical simulation methods in all engineering disciplines gains more and more importance. The successful and efficient application of such tools requires certain basic knowledge about the underlying numerical techniques. The text gives a practice-oriented introduction in modern numerical methods as they typically are applied in mechanical, chemical, or civil engineering. Problems from heat transfer, structural mechanics, and fluid mechanics constitute a thematical focus of the text. For the basic understanding of the topic aspects of numerical mathematics, natural sciences, computer science, and the corresponding engineering area are simultaneously important. Usually, the necessary information is distributed in different textbooks from the individual disciplines. In the present text the subject matter is presented in a comprehensive multidisciplinary way, where aspects from the different fields are treated insofar as it is necessary for general understanding. Overarching aspects and important questions related to accuracy, efficiency, and cost effectiveness are discussed. The topics are presented in an introductory manner, such that besides basic mathematical standard knowledge in analysis and linear algebra no further prerequisites are necessary. The book is suitable either for self-study or as an accompanying textbook for corresponding lectures. It can be useful for students of engineering disciplines as well as for computational engineers in industrial practice.




Fundamentals Of Engineering Numerical Analysis


Book Description

Engineers need hands-on experience in solving complex engineering problems with computers. This text introduces numerical methods and shows how to develop, analyze, and use them. A thorough and practical book, it is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods. They will learn what factors affect accuracy, stability, and convergence, and also not to believe at first glance the numerical output spewed out from a computer. A special feature is the numerous examples and exercises that are included to give students first-hand experience. The material is based on Professor Moin s teachings in numerical analysis and in his own career as a computational physicist/engineer. A thorough solutions manual is availble upon request from the publisher.




Numerical Analysis


Book Description

Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that exist in current textbooks. For example, both necessary and sufficient conditions for convergence of basic iterative methods are covered, and proofs are given in full generality, not just based on special cases. The book is accessible to undergraduate mathematics majors as well as computational scientists wanting to learn the foundations of the subject. Presents the mathematical foundations of numerical analysis Explains the mathematical details behind simulation software Introduces many advanced concepts in modern analysis Self-contained and mathematically rigorous Contains problems and solutions in each chapter Excellent follow-up course to Principles of Mathematical Analysis by Rudin




Numerical Methods


Book Description

A rigorous and comprehensive introduction to numerical analysis Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects—design, analysis, or computer implementation—of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online