Fundamentals of Nanotoxicology


Book Description

Fundamentals of Nanotoxicology: Concepts and Applications provides an outline to fundamental concepts of nanotoxicology and their applications. The book opens historical oversights on nanotechnology, terminology, comparison of nanomaterial sizes, and an overview of regulations. It then goes on to cover types, classifications, sources and properties. It also delves into mechanisms of toxicity as well as health and safety assessments. Biomedical, agricultural, and food applications are explored, and ecotoxicology and the environmental impact on nanomaterials rounds out the book's overview of this topic. This book will be a helpful resource for understanding concepts and current knowledge to academics, advanced students, and researchers interested in entering or learning more about this interdisciplinary field of study. - Provides types, classifications, sources, properties, the application of nanomaterials, and impacts on humans and the environment - Includes risk, hazard and exposure assessments, risk characterizations and testing strategies - Discusses mechanisms of toxicity, organ and non-organ directed toxicity, and mammalian toxicology of nanomaterials




Nanotoxicology


Book Description

The field of nanomedicine has risen quickly due to the increasing number of designer-made nanomaterials. These nanomaterials have the potential to manage diseases and change the way medicine is currently studied. However, the increased practice of using nanomaterials has shed light on how many concepts of nanomedicine and nanotoxicity have been overlooked. Nanotoxicology: Toxicity Evaluation of Nanomedicine Applications addresses the existing gaps between nanomedicine and nanotoxicity. This book also brings together up-to-date knowledge on advances toward safe-by-design nanomaterials and existing toxicity challenges. This book delivers a comprehensive coverage in the field with fundamental understanding, serving as a platform to convey essential concepts of nanotoxicology and how these concepts can be employed to develop advanced nanomaterials for a range of biomedical applications. This book is an effort to answer some of the thoughtful nanotoxicological complications and their auspicious probable solutions with new approaches and careful toxicity assessment. Key Features: Reveals novel nanoscale approaches, toxicity assessment, and biomedical applications Includes importance of nanotoxicity concepts in developing smart nanomaterials Highlights unique contributions and "A to Z" aspects on the state-of-the-art from global leaders Offers a complete package to learn fundamentals with recommendations on nanomaterials toxicity and safe-by-design nanomedicines Nanotoxicology: Toxicity Evaluation of Nanomedicine Applications illuminates the high potential of many innovative nanomaterials, ultimately demonstrating them to be promising substitutes for available therapies that can be effectively used in fighting a myriad of biomedical complications. Further, this book reports legal, ethical, safety, and regulatory issues associated with nanomaterials, which have often been neglected, if not overlooked in literature and limiting clinical translation at nanoscale level. It will equip readers with cutting-edge knowledge of promising developments in nanomedicine and nanotoxicology, along with potential future prospects.




Lanthanide-Doped Luminescent Nanomaterials


Book Description

Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the subject. Xueyuan Chen is a Professor at Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences. Yongsheng Liu is a Research Associate Professor at FJIRSM, Chinese Academy of Sciences. Datao Tu is a Research Assistant Professor at FJIRSM, Chinese Academy of Sciences.




Nanotoxicology


Book Description

As the application of nanotechnology in the myriad disciplines of science and engineering--from agriculture, pharmaceuticals, material science, and biotechnology to sensors, electronics, and mechanical and electrical engineering--brings benefits it also can produce serious threats to human health and the environment that must be evaluated. The unique properties of nanomaterials make them different from their bulk counterparts. In addition to such unique properties, the nanometric size of nanomaterials can invite some detrimental effects on the health and well-being of living organisms and the environment. Thus, it is important to distinguish nanomaterials with such ill effects from nanomaterials with no or minimum toxicity. Nanotoxicology: Toxicity Evaluation, Risk Assessment and Management covers issues such as the basic principles of nanotoxicity, methods used for nanotoxicity evaluation, risk assessment and its management for nanomaterial toxicity with a focus on current trends, limitations, challenges, and future directions of nanotoxicity evaluation. Various experts from different countries discuss these issues in detail in this book. This will be helpful to researchers, educators, and students who are interested in research opportunities for avoiding the environmental and health hazards of nanomaterials. This book will also be useful for industrial practitioners, policy makers, and other professionals in the fields of toxicology, medicine, pharmacology, food, drugs, and other regulatory sciences.




An Introduction to Aquatic Toxicology


Book Description

An Introduction to Aquatic Toxicology is an introductory reference for all aspects of toxicology pertaining to aquatic environments. As water sources diminish, the need to understand the effects that contaminants may have on aquatic organisms and ecosystems increases in importance. This book will provide you with a solid understanding of aquatic toxicology, its past, its cutting-edge present and its likely future. An Introduction to Aquatic Toxicology will introduce you to the global issue of aquatic contamination, detailing the major sources of contamination, from where they originate, and their effects on aquatic organisms and their environment. State-of-the-art toxicological topics covered include nanotoxicology, toxicogenomics, bioinformatics, transcriptomics, metabolomics, as well as water management and the toxicological effects of major environmental issues such as algal blooms, climate change and ocean acidification. This book is intended for anyone who wants to know more about the impact of toxicants on aquatic organisms and ecosystems, or to keep up to date with recent and future developments in the field. - Provides with the latest perspectives on the impacts of toxicants on aquatic environments, such as nanotoxicology, toxicogenomics, ocean acidification and eutrophication - Offers a complete overview, beginning with the origins of aquatic toxicology and concluding with potential future challenges - Includes guidance on testing methods and a glossary of aquatic toxicology terms




Neurotoxicity of Nanomaterials and Nanomedicine


Book Description

Neurotoxicity of Nanomaterials and Nanomedicine presents an overview of the exciting research in neurotoxicity and nanomaterials. Nanomaterials have been extensively used in medicine, including diagnosis probes, drug carriers, and embedded materials. While some have been approved for clinical use, most nanomaterials are waiting to be transferred from lab to clinic. However, the toxicity is a main barrier that restricts the translation. This comprehensive book includes chapters on the most commonly used individual nanoparticles, with information on the applications, neurotoxicity, and related mechanisms of each, providing the most in-depth and current information available. The book examines the pathways that nanomaterials enter into, and eliminate, from the brain, along with the strategies that could reduce the neurotoxicity of nanomaterials. Providing a background to the subject, detailed information, and ideas for future directions in research, the book is essential for students and researchers in toxicology, and for those in medicine, neurology, pharmacology, pharmaceutical science, and materials science who are researching nanomaterials. - Presents a thorough discussion of the most common nanoparticles in the brain and their neurotoxicology - Includes the most common nanoparticles, their applications, and mechanisms - Provides one of the first books to focus on nanomedicine and neurotoxicity




Nanoscience in Dermatology


Book Description

Nanoscience in Dermatology covers one of the two fastest growing areas within dermatological science, nanoscience and nanotechnology in dermatology. Recently, great progress has been made in the research and development of nanotechnologies and nanomaterials related to various applications in medicine and, in general, the life sciences. There is increasing enthusiasm for nanotechnology applications in dermatology (drug delivery, diagnostics, therapeutics, imaging, sensors, etc.) for understanding skin biology, improving early detection and treatment of skin diseases, and in the design and optimization of cosmetics. Light sensitive nanoparticles have recently been explored, opening a new era for the combined applications of light with nanotechnology, also called photonanodermatology. However, concerns have been raised regarding the adverse effects of intentional and unintentional nanoparticle exposure and their toxicity. Written by experts working in these exciting fields, this book extensively covers nanotechnology applications, together with the fundamentals and toxicity aspects. It not only addresses current applications of nanotechnology, but also discusses future trends of these ever-growing and rapidly changing fields, providing scientists and dermatologists with a clear understanding of the advantages and challenges of nanotechnology in skin medicine. - Provides knowledge of current and future applications of nanoscience and nanotechnology in dermatology - Outlines the fundamentals, methods, toxicity aspects, and other relevant aspects for nanotechnology based applications in dermatology - Coherently structured book written by experts working in the fields covered




Fundamentals of Nanotechnology


Book Description

WINNER 2009 CHOICE AWARD OUTSTANDING ACADEMIC TITLE! Nanotechnology is no longer a subdiscipline of chemistry, engineering, or any other field. It represents the convergence of many fields, and therefore demands a new paradigm for teaching. This textbook is for the next generation of nanotechnologists. It surveys the field’s broad landscape, exploring the physical basics such as nanorheology, nanofluidics, and nanomechanics as well as industrial concerns such as manufacturing, reliability, and safety. The authors then explore the vast range of nanomaterials and systematically outline devices and applications in various industrial sectors. This color text is an ideal companion to Introduction to Nanoscience by the same group of esteemed authors. Both titles are also available as the single volume Introduction to Nanoscience and Nanotechnology Qualifying instructors who purchase either of these volumes (or the combined set) are given online access to a wealth of instructional materials. These include detailed lecture notes, review summaries, slides, exercises, and more. The authors provide enough material for both one- and two-semester courses.




Fundamentals of Drug Delivery


Book Description

A comprehensive guide to the current research, major challenges, and future prospects of controlled drug delivery systems Controlled drug delivery has the potential to significantly improve therapeutic outcomes, increase clinical benefits, and enhance the safety of drugs in a wide range of diseases and health conditions. Fundamentals of Drug Delivery provides comprehensive and up-to-date coverage of the essential principles and processes of modern controlled drug delivery systems. Featuring contributions by respected researchers, clinicians, and pharmaceutical industry professionals, this edited volume reviews the latest research in the field and addresses the many issues central to the development of effective, controlled drug delivery. Divided in three parts, the book begins by introducing the concept of drug delivery and discussing both challenges and opportunities within the rapidly evolving field. The second section presents an in-depth critique of the common administration routes for controlled drug delivery, including delivery through skin, the lungs, and via ocular, nasal, and otic routes. The concluding section summarizes the current state of the field and examines specific issues in drug delivery and advanced delivery technologies, such as the use of nanotechnology in dermal drug delivery and advanced drug delivery systems for biologics. This authoritative resource: Covers each main stage of the drug development process, including selecting pharmaceutical candidates and evaluating their physicochemical characteristics Describes the role and application of mathematical modelling and the influence of drug transporters in pharmacokinetics and drug disposition Details the physiology and barriers to drug delivery for each administration route Presents a historical perspective and a look into the possible future of advanced drug delivery systems Explores nanotechnology and cell-mediated drug delivery, including applications for targeted delivery and toxicological and safety issues Includes comprehensive references and links to the primary literature Edited by a team of of internationally-recognized experts, Fundamentals of Drug Delivery is essential reading for researchers, industrial scientists, and advanced students in all areas of drug delivery including pharmaceutics, pharmaceutical sciences, biomedical engineering, polymer and materials science, and chemical and biochemical engineering.




Principles of Toxicology


Book Description

A fully updated and expanded edition of the bestselling guide on toxicology and its practical application The field of toxicology has grown enormously since Industrial Toxicology: Safety and Health Applications in the Workplace was first published in 1985. And while the original edition was hugely popular among occupational health professionals, the time is ripe to address toxic agents not only in the industrial setting but also in the environment at large. Renamed Principles of Toxicology: Environmental and Industrial Applications, this new edition provides health protection professionals as well as environmental scientists with precise, up-to-date, practical information on how to apply the science of toxicology in both the occupational and environmental setting. Through contributions from leading experts in diverse fields, Principles of Toxicology, Second Edition features: Clear explanations of the fundamentals necessary for an understanding of the effects of chemical hazards on human health and ecosystems Coverage of occupational medicine and epidemiological issues The manifestation of toxic agents such as metals, pesticides, organic solvents, and natural toxins Special emphasis on the evaluation and control of toxic hazards Specific case histories on applying risk assessment methods in the modern workplace Ample figures, references, and a comprehensive glossary of toxicological terms