Fundamentals of III-V Semiconductor MOSFETs


Book Description

Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key challenge of the III-V MOSFET technology is a high-quality, thermodynamically stable gate dielectric that passivates the interface states, similar to SiO2 on Si. Several chapters give a detailed description of materials science and electronic behavior of various dielectrics and related interfaces, as well as physics of fabricated devices and MOSFET fabrication technologies. Topics also include recent progress and understanding of various materials systems; specific issues for electrical measurement of gate stacks and FETs with low and wide bandgap channels and high interface trap density; possible paths of integration of different semiconductor materials on Si platform.




The MOS System


Book Description

A detailed, up-to-date guide to modern MOS structures, describing key tools, cutting-edge models, novel phenomena and challenges for future development. Abstract concepts are supported by practical examples and presented alongside recent theoretical and experimental results. An ideal companion for researchers, graduate students and industrial development engineers.




Semiconductor Gas Sensors


Book Description

Semiconductor Gas Sensors, Second Edition, summarizes recent research on basic principles, new materials and emerging technologies in this essential field. Chapters cover the foundation of the underlying principles and sensing mechanisms of gas sensors, include expanded content on gas sensing characteristics, such as response, sensitivity and cross-sensitivity, present an overview of the nanomaterials utilized for gas sensing, and review the latest applications for semiconductor gas sensors, including environmental monitoring, indoor monitoring, medical applications, CMOS integration and chemical warfare agents. This second edition has been completely updated, thus ensuring it reflects current literature and the latest materials systems and applications. - Includes an overview of key applications, with new chapters on indoor monitoring and medical applications - Reviews developments in gas sensors and sensing methods, including an expanded section on gas sensor theory - Discusses the use of nanomaterials in gas sensing, with new chapters on single-layer graphene sensors, graphene oxide sensors, printed sensors, and much more




Ferroelectric Thin Films XII: Volume 784


Book Description

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners. This book, first published in 2004, offers scientific and technological information on ferroelectric thin films from an international mix of academia, industry and government organizations.




Silicon Surfaces And Formation Of Interfaces: Basic Science In The Industrial World


Book Description

Silicon, the basic material for a multibillion-dollar industry, is the most widely researched and applied semiconductor, and its surfaces are the most thoroughly studied of all semiconductor surfaces. Silicon Surfaces and Formation of Interfaces may be used as an introduction to graduate-level physics and chemical physics. Moreover, it gives a specialized and comprehensive description of the most common faces of silicon crystals as well as their interaction with adsorbates and overlayers. This knowledge is presented in a systematic and easy-to-follow way. Discussion of each system is preceded by a brief overview which categorizes the features and physical mechanisms before the details are presented. The literature is easily available, and the references are numerous and organized in tables, allowing a search without the need to browse through the text.Though this volume focuses on a scientific understanding of physics on the atomistic and mesoscopic levels, it also highlights existing and potential links between basic research in surface science and applications in the silicon industry. It will be valuable to anyone writing a paper, thesis, or proposal in the field of silicon surfaces.




Nanoscale Materials and Modeling--relations Among Processing, Microstructure and Mechanical Properties


Book Description

The 55 papers in this collection from the April 2004 symposium study processing methods for nanostructured materials, internal stress and the physics of strengthening mechanisms at the nanoscale, and the mechanical properties of nanoscale materials. Each of the six parts presents experimental contributions first, followed by papers describing related modeling and simulation. Topics include the effect of gold films electrodeposited on nickel substrates, microstructural refinement in copper solid solutions by machining, the synthesis of zeolite as ordered multi-crystal arrays, the elevated temperature mechanical properties of devitrified metallic glass, and improved fracture toughness in advanced nanocrystalline ceramic composites. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).




Fundamentals of Solid State Electronics


Book Description

This is perhaps the most comprehensive undergraduate textbook on the fundamental aspects of solid state electronics. It presents basic and state-of-the-art topics on materials physics, device physics, and basic circuit building blocks not covered by existing textbooks on the subject. Each topic is introduced with a historical background and motivations of device invention and circuit evolution. Fundamental physics is rigorously discussed with minimum need of tedious algebra and advanced mathematics. Another special feature is a systematic classification of fundamental mechanisms not found even in advanced texts. It bridges the gap between solid state device physics covered here with what students have learnt in their first two years of study. Used very successfully in a one-semester introductory core course for electrical and other engineering, materials science and physics junior students, the second part of each chapter is also used in an advanced undergraduate course on solid state devices. The inclusion of previously unavailable analyses of the basic transistor digital circuit building blocks and cells makes this an excellent reference for engineers to look up fundamental concepts and data, design formulae, and latest devices such as the GeSi heterostructure bipolar transistors. This book is also available as a set with Fundamentals of Solid-State Electronics — Study Guide and Fundamentals of Solid-State Electronics — Solution Manual.




Materials Fundamentals of Gate Dielectrics


Book Description

This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discontinuity within the framework of the density functional theory. Experimental methods include oxide melt solution calorimetry and differential scanning calorimetry, Raman scattering and other optical characterization techniques, transmission electron microscopy, and x-ray photoelectron spectroscopy. Many of the problems encounterd in the world of CMOS are also relvant for other semiconductors such as GaAs. A comprehensive review of recent developments in this field is thus also given. The book should be of interest to those actively engaged in the gate dielectric research, and to graduate students in Materials Science, Materials Physics, Materials Chemistry, and Electrical Engineering.







Integration of Functional Oxides with Semiconductors


Book Description

This book describes the basic physical principles of the oxide/semiconductor epitaxy and offers a view of the current state of the field. It shows how this technology enables large-scale integration of oxide electronic and photonic devices and describes possible hybrid semiconductor/oxide systems. The book incorporates both theoretical and experimental advances to explore the heteroepitaxy of tuned functional oxides and semiconductors to identify material, device and characterization challenges and to present the incredible potential in the realization of multifunctional devices and monolithic integration of materials and devices. Intended for a multidisciplined audience, Integration of Functional Oxides with Semiconductors describes processing techniques that enable atomic-level control of stoichiometry and structure and reviews characterization techniques for films, interfaces and device performance parameters. Fundamental challenges involved in joining covalent and ionic systems, chemical interactions at interfaces, multi-element materials that are sensitive to atomic-level compositional and structural changes are discussed in the context of the latest literature. Magnetic, ferroelectric and piezoelectric materials and the coupling between them will also be discussed. GaN, SiC, Si, GaAs and Ge semiconductors are covered within the context of optimizing next-generation device performance for monolithic device processing.